A scalable biomanufacturing platform for bacterial magnetosomes

被引:1
|
作者
Fernandez-Castane, Alfred [1 ,2 ,3 ]
Li, Hong [1 ,5 ]
Ebeler, Moritz [4 ,6 ]
Franzreb, Matthias [4 ]
Overton, Tim W. [1 ,2 ]
Thomas, Owen R. T. [1 ]
机构
[1] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, England
[2] Univ Birmingham, Inst Microbiol & Infect, Birmingham B15 2TT, England
[3] Aston Univ, Energy & Bioprod Res Inst, Birmingham B4 7ET, England
[4] Karlsruhe Inst Technol, Inst Funct Interfaces, Karlsruhe, Germany
[5] Biologics Co Ltd, Wuxi 214092, Peoples R China
[6] Boehringer Ingelheim Pharm GmbH & Co KG, Birkendorfer Str 65, D-88397 Biberach, Germany
基金
英国生物技术与生命科学研究理事会;
关键词
Aqueous two-phase systems ATPS; Bioprocess separations; Downstream processing DSP; Magnetic nanoparticles MNP; Magnetotactic bacteria MTB; Purification; MAGNETOSPIRILLUM-GRYPHISWALDENSE MSR-1; AMB-1 MAGNETOTACTIC BACTERIA; ROTATING-DISK CONTACTOR; CLOUD POINT EXTRACTION; MAGNETIC NANOPARTICLES; AROMATIC CONTAMINANTS; WASTE-WATER; CHAINS; CELLS; BIOMINERALIZATION;
D O I
10.1016/j.fbp.2024.01.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
An integrated scalable platform for fermentative production and downstream processing of bacterial magnetosome products is advanced. Long magnetosome chains, high cellular magnetism, and low numbers of polyhydroxyalkanoate granules were obtained during the exponential growth phase of a two-stage continuous high cell density fermentation of M. gryphiswaldense MSR-1. Centrifugally concentrated 20% (w/v) suspensions of exponential phase cells were disrupted with high efficiency (similar to 92%) in a single pass through a Constant Systems Cell Disruptor operated at 10 kpsi, releasing -75% of the cellular iron. Magnetosomes were recovered in partially purified form from crude whole cell disruptates by rotor-stator high-gradient magnetic separation. Further purification/polishing was achieved by magnetically enhanced density separation in an aqueous micellar two-phase system (a new technique developed in this work as a low-cost alternative to sucrose gradient ultracentrifugation). The unoptimised 4-step process delivered highly purified magnetosomes (ca. 50 and 80-fold with respect to polyhydroxyalkanoate and protein) in > 50% yield, with no evidence of crystal coat damage, acceptable reduction (-35%) in median magnetosome chain length, and magnetic properties (pot-bellied hysteresis loop, coercivity = 9.8 mT, 'squareness' = 0.32) expected of isolated magnetosome chains. Though demonstrated in batch mode, the platform displays potential for end-to-end continuous manufacture of future magnetosome-based products.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 50 条
  • [31] Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes
    Yadav, Virendra Kumar
    Pramanik, Sheersha
    Alghamdi, Saad
    Atwah, Banan
    Qusty, Naeem F.
    Babalghith, Ahmad
    Solanki, Vijendra Singh
    Agarwal, Neha
    Gupta, Nishant
    Niazi, Parwiz
    Patel, Ashish
    Choudhary, Nisha
    Zairov, Rustem
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2025, 20 : 403 - 444
  • [32] Induction of Axonal Outgrowth in Mouse Hippocampal Neurons via Bacterial Magnetosomes
    De Vincentiis, Sara
    Falconieri, Alessandro
    Mickoleit, Frank
    Cappello, Valentina
    Schuler, Dirk
    Raffa, Vittoria
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
  • [33] Bacterial magnetosomes - nature's powerful contribution to MPI tracer research
    Kraupner, A.
    Eberbeck, D.
    Heinke, D.
    Uebe, R.
    Schuler, D.
    Briel, A.
    NANOSCALE, 2017, 9 (18) : 5788 - 5793
  • [34] Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging
    Hartung, Annegret
    Lisy, Marcus R.
    Herrmann, Karl-Heinz
    Hilger, Ingrid
    Schueler, Dirk
    Lang, Claus
    Bellemann, Matthias E.
    Kaiser, Werner A.
    Reichenbach, Juergen R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 311 (01) : 454 - 459
  • [35] A scalable and xeno-free bioreactor system for biomanufacturing of hUC-MSCs
    Adlerz, K.
    Takacs, J.
    Kirian, R. D.
    Trempel, M.
    Rowley, J. A.
    Ahsan, T.
    CYTOTHERAPY, 2020, 22 (05) : S46 - S47
  • [36] Generating iPSCs: Translating Cell Reprogramming Science into Scalable and Robust Biomanufacturing Strategies
    Silva, Marli
    Daheron, Laurence
    Hurley, Hannah
    Bure, Kim
    Barker, Richard
    Carr, Andrew J.
    Williams, David
    Kim, Hae-Won
    French, Anna
    Coffey, Pete J.
    Cooper-White, Justin J.
    Reeve, Brock
    Rao, Mahendra
    Snyder, Evan Y.
    Ng, Kelvin S.
    Mead, Benjamin E.
    Smith, James A.
    Karp, Jeffrey M.
    Brindley, David A.
    Wall, Ivan
    CELL STEM CELL, 2015, 16 (01) : 13 - 17
  • [37] Innovative fixed bed bioreactor platform: Enabling linearly scalable adherent cell biomanufacturing with real-time biomass prediction from nutrient consumption
    Goral, Vasiliy N.
    Hong, Yulong
    Scibek, Jeffery J.
    Sun, Yujian
    Romeo, Lori E.
    Rao, Abhijit
    Manning, Daniel
    Zhou, Yue
    Schultes, Joel A.
    Tjong, Vinalia
    Pikula, Dragan
    Krebs, Kathleen A.
    Ferrie, Ann M.
    Kramel, Stefan
    Weber, Jennifer L.
    Upton, Todd M.
    Fang, Ye
    Melkoumian, Zara
    BIOTECHNOLOGY JOURNAL, 2024, 19 (08)
  • [39] The business impact of an integrated continuous biomanufacturing platform for recombinant protein production
    Walther, Jason
    Godawat, Rahul
    Hwang, Chris
    Abe, Yuki
    Sinclair, Andrew
    Konstantinov, Konstantin
    JOURNAL OF BIOTECHNOLOGY, 2015, 213 : 3 - 12
  • [40] Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites
    Zaini, Paulo A.
    Haddad, Katherine R.
    Feinberg, Noah G.
    Ophir, Yakir
    Nandi, Somen
    Mcdonald, Karen A.
    Dandekar, Abhaya M.
    BIOTECH, 2024, 13 (04):