Generalized Weakly Symmetric Sasakian Manifolds

被引:0
|
作者
Pirhadi, V. [1 ]
Ramandi, G. Fasihi [2 ]
Azami, S. [2 ]
机构
[1] Univ Kashan, Dept Math, Fac Math, Math, Kashan, Iran
[2] Imam Khomeini Int Univ, Fac Sci, Dept Math, Math, Qazvin, Iran
关键词
Sasakian manifolds; generalized weakly symmetric manifolds; generalized weakly Ricci-symmetric manifolds; weakly parallel invariant submanifolds;
D O I
10.30495/JME.2023.2546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this parer, we give a necessary condition for Sasakian manifolds to be generalized weakly symmetric. We prove the odd-dimensional spheres are the only generalized weakly symmetric Sasakian manifolds. Then, we show that generalized weakly Ricci-symmetric Sasakian manifolds are Einstein. Thereafter, we define the sense of weakly parallel Riemannian submanifolds and show that every weakly parallel invariant submanifold of a Sasakian manifold is totally geodesic. Finally, we provide some examples which verify our main results.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On decomposable weakly conformally symmetric manifolds
    Hui, S. K.
    Matsuyama, Y.
    Shaikh, A. A.
    ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) : 82 - 95
  • [32] Weakly Z-symmetric manifolds
    Mantica, C. A.
    Molinari, L. G.
    ACTA MATHEMATICA HUNGARICA, 2012, 135 (1-2) : 80 - 96
  • [33] On decomposable weakly conharmonically symmetric manifolds
    Shaikh A.A.
    Hui S.K.
    Lobachevskii Journal of Mathematics, 2008, 29 (4) : 206 - 215
  • [34] On special weakly symmetric Riemannian manifolds
    Singh, H
    Khan, Q
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (03): : 523 - 536
  • [35] On weakly cyclic Z symmetric manifolds
    U. C. De
    C. A. Mantica
    Y. J. Suh
    Acta Mathematica Hungarica, 2015, 146 : 153 - 167
  • [36] Weakly Z-symmetric manifolds
    Carlo Alberto Mantica
    Luca Guido Molinari
    Acta Mathematica Hungarica, 2012, 135 : 80 - 96
  • [37] Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds
    Eui Chul Kim
    Annals of Global Analysis and Geometry, 2014, 45 : 67 - 93
  • [38] Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds
    Kim, Eui Chul
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (01) : 67 - 93
  • [39] On generalized recurrent lorentzian para-sasakian manifolds
    Department of Mathematics, Balikesir University, 10145, Çaǧiş, Balikesir, Turkey
    Int. J. Appl. Math. Stat., 2008, DO8 (92-97):
  • [40] On weakly cyclic Z symmetric manifolds
    De, U. C.
    Mantica, C. A.
    Suh, Y. J.
    ACTA MATHEMATICA HUNGARICA, 2015, 146 (01) : 153 - 167