Generalized Weakly Symmetric Sasakian Manifolds

被引:0
|
作者
Pirhadi, V. [1 ]
Ramandi, G. Fasihi [2 ]
Azami, S. [2 ]
机构
[1] Univ Kashan, Dept Math, Fac Math, Math, Kashan, Iran
[2] Imam Khomeini Int Univ, Fac Sci, Dept Math, Math, Qazvin, Iran
关键词
Sasakian manifolds; generalized weakly symmetric manifolds; generalized weakly Ricci-symmetric manifolds; weakly parallel invariant submanifolds;
D O I
10.30495/JME.2023.2546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this parer, we give a necessary condition for Sasakian manifolds to be generalized weakly symmetric. We prove the odd-dimensional spheres are the only generalized weakly symmetric Sasakian manifolds. Then, we show that generalized weakly Ricci-symmetric Sasakian manifolds are Einstein. Thereafter, we define the sense of weakly parallel Riemannian submanifolds and show that every weakly parallel invariant submanifold of a Sasakian manifold is totally geodesic. Finally, we provide some examples which verify our main results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On Generalized Weakly Symmetric Kenmotsu Manifolds
    Baishya, Kanak Kanti
    Chowdhury, Partha Roy
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (06): : 211 - 222
  • [2] On generalized weakly conharmonically symmetric manifolds
    Patra, Ananta
    Hui, Shyamal Kumar
    Patra, Akshoy
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 251 - 258
  • [3] On generalized weakly symmetric α-cosymplectic manifolds
    Beyendi, Selahattin
    Yildirim, Mustafa
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1745 - 1755
  • [4] ON HYPER GENERALIZED WEAKLY SYMMETRIC MANIFOLDS
    Baishya, Kanak K.
    Zengin, Fusun
    Mikes, Josef
    PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2018, : 66 - 74
  • [5] The existence of weakly symmetric and weakly Ricci-symmetric Sasakian manifolds admitting a quarter-symmetric metric connection
    Jai Prakash Jaiswal
    Acta Mathematica Hungarica, 2011, 132 : 358 - 366
  • [6] The existence of weakly symmetric and weakly Ricci-symmetric Sasakian manifolds admitting a quarter-symmetric metric connection
    Jaiswal, J. P.
    ACTA MATHEMATICA HUNGARICA, 2011, 132 (04) : 358 - 366
  • [7] On φ-quasiconformally symmetric Sasakian manifolds
    De, Uday Chand
    Ozgur, Cihan
    Mondal, Abul Kalam
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (02): : 191 - 200
  • [8] On Weakly Cyclic Generalized Z-Symmetric Manifolds
    Pankaj Pandey
    National Academy Science Letters, 2020, 43 : 347 - 350
  • [9] On generalized weakly symmetric (LCS)n-manifolds
    Baishya, Kanak Kanti
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 427 - 438
  • [10] ON GENERALIZED WEAKLY SEMI-CONFORMALLY SYMMETRIC MANIFOLDS
    Hui, Shyamal Kumar
    Patra, Akshoy
    Patra, Ananta
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (04): : 771 - 782