Performance of Artificial Intelligence-Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study

被引:11
|
作者
Jiang, Ke-Wen [1 ,2 ]
Song, Yang [3 ]
Hou, Ying [1 ,2 ]
Zhi, Rui [1 ,2 ]
Zhang, Jing [1 ,2 ]
Bao, Mei-Ling [4 ]
Li, Hai [4 ]
Yan, Xu [5 ]
Xi, Wei [3 ]
Zhang, Cheng-Xiu [3 ]
Yao, Ye-Feng [3 ]
Yang, Guang [3 ]
Zhang, Yu-Dong [1 ,2 ]
机构
[1] Nanjing Med Univ, Dept Radiol, Affiliated Hosp 1, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Med Univ, AI Imaging Lab, Med Imaging Coll, Nanjing, Jiangsu, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab Magnet Resonance, Shanghai, Peoples R China
[4] Nanjing Med Univ, Dept Pathol, Affiliated Hosp 1, Nanjing, Jiangsu, Peoples R China
[5] Siemens Healthcare, MR Sci Mkt, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
clinically significant prostate cancer; artificial intelligence; deep learning; biparametric MRI; the Prostate Imaging Reporting and Data System; RESONANCE; ACCURACY; BIOPSY; MEN;
D O I
10.1002/jmri.28427
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background The high level of expertise required for accurate interpretation of prostate MRI. Purpose To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. Study Type Retrospective. Subjects One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U-Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). Field Strength/Sequence 3.0T/scanners, T-2-weighted imaging (T2WI), diffusion-weighted imaging, and apparent diffusion coefficient map. Assessment Close-loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score >6 was identified as CsPC at pathology. Statistical Tests Area under the receiver operating characteristic curve (AUC-ROC); Delong test; Meta-regression I-2 analysis. Results In average, for internal test, AI had lower AUC-ROC than subspecialists (0.85 vs. 0.92, P < 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P < 0.05) and general reader (0.83, P < 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel-Haenszel I-2 = 56.8%, P < 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI-RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P > 0.05). Data Conclusion Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. Evidence Level 3 Technical Efficacy Stage 2
引用
收藏
页码:1352 / 1364
页数:13
相关论文
共 50 条
  • [31] Comparative Performance of Deep Learning and Radiologists for the Diagnosis and Localization of Clinically Significant Prostate Cancer at MRI: A Systematic Review
    Roest, Christian
    Fransen, Stefan J.
    Kwee, Thomas C.
    Yakar, Derya
    LIFE-BASEL, 2022, 12 (10):
  • [32] Impact of an artificial intelligence-aided endoscopic diagnosis system on improving endoscopy quality for trainees in colonoscopy: Prospective, randomized, multicenter study
    Yamaguchi, Daisuke
    Shimoda, Ryo
    Miyahara, Koichi
    Yukimoto, Takahiro
    Sakata, Yasuhisa
    Takamori, Ayako
    Mizuta, Yumi
    Fujimura, Yutaro
    Inoue, Suma
    Tomonaga, Michito
    Ogino, Yuya
    Eguchi, Kohei
    Ikeda, Kei
    Tanaka, Yuichiro
    Takedomi, Hironobu
    Hidaka, Hidenori
    Akutagawa, Takashi
    Tsuruoka, Nanae
    Noda, Takahiro
    Tsunada, Seiji
    Esaki, Motohiro
    DIGESTIVE ENDOSCOPY, 2024, 36 (01) : 40 - 48
  • [33] BIPARAMETRIC MRI PERFORMANCE IS COMPARABLE TO MULTIPARAMETRIC MRI FOR THE ACCURATE DETECTION OF CLINICALLY SIGNIFICANT PROSTATE CANCER
    Pickersgill, Nicholas A.
    Shiang, Alex L.
    Vetter, Joel M.
    Barashi, Nimrod
    Sheng, John
    Ippolito, Joseph E.
    Kim, Eric H.
    JOURNAL OF UROLOGY, 2024, 211 (05): : E307 - E307
  • [34] Diagnostic accuracy of biparametric vs multiparametric MRI in clinically significant prostate cancer: Comparison between readers with different experience
    Di Campli, Eleonora
    Pizzi, Andrea Delli
    Seccia, Barbara
    Cianci, Roberta
    d'Annibale, Martina
    Colasante, Antonella
    Cinalli, Sebastiano
    Castellan, Pietro
    Navarra, Riccardo
    Iantorno, Romina
    Gabrielli, Daniela
    Buffone, Angelica
    Caulo, Massimo
    Basilico, Raffaella
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 101 : 17 - 23
  • [35] Comparison of the diagnostic accuracy of clinically significant prostate cancer based on the prostate imaging reporting and data system (PI-RADS): an interobserver study
    Luo, N.
    Zhang, K.
    Zhu, G.
    INTERNATIONAL JOURNAL OF UROLOGY, 2019, 26 : 133 - 133
  • [36] RETROSPECTIVE VALIDATION OF A COMPUTER AIDED DIAGNOSIS SYSTEM BASED ON MULTIPARAMETRIC TRANSRECTAL ULTRASOUND FOR THE LOCALIZATION OF CLINICALLY SIGNIFICANT PROSTATE CANCER
    van den Kroonenberg, Daniel L.
    Jager, Auke
    Postema, Arnoud W.
    de Bie, Katelijne
    Hagens, Marinus J.
    Wijkstra, Hessel
    Nooijen, Peet T. G. A.
    van der Linden, Hans
    de Baaij, Joost
    van Basten, Jean-Peal A.
    van Leeuwen, Pim J.
    van der Poel, Henk G.
    Beerlage, Harrie P.
    Mischi, Massimo
    Oddens, Jorg R.
    JOURNAL OF UROLOGY, 2024, 211 (05): : E490 - E491
  • [37] Assessment of artificial intelligence-aided chest computed tomography in diagnosis of chronic obstructive airway disease: an observational study
    Saad, Maha M.
    Bayoumy, Ahmed A.
    EL-Nisr, Magdy M.
    Zaki, Noha M.
    Khalil, Tarek H.
    ELSerafi, Ahmed F.
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2023, 54 (01):
  • [38] The role of artificial intelligence for the detection of clinically significant prostate cancer at multiparametric magnetic resonance imaging
    Quarta, L.
    Scuderi, S.
    Gandaglia, G.
    Stabile, A.
    Marzorati, C.
    Russo, T.
    Brembilla, G.
    Camisassa, E.
    Leni, R.
    Cucchiara, V.
    Bianchi, M.
    Cannoletta, D.
    Zaurito, P.
    Barletta, F.
    Cosenza, M.
    Robesti, D.
    Mazzone, E.
    De Cobelli, F.
    Montorsi, F.
    Briganti, A.
    EUROPEAN UROLOGY, 2024, 85 : S61 - S61
  • [39] Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study
    Strom, Peter
    Kartasalo, Kimmo
    Olsson, Henrik
    Solorzano, Leslie
    Delahunt, Brett
    Berney, Daniel M.
    Bostwick, David G.
    Evans, Andrew J.
    Grignon, David J.
    Humphrey, Peter A.
    Iczkowski, Kenneth A.
    Kench, James G.
    Kristiansen, Glen
    van der Kwast, Theodorus H.
    Leite, Katia R. M.
    McKenney, Jesse K.
    Oxley, Jon
    Pan, Chin-Chen
    Samaratunga, Hemamali
    Srigley, John R.
    Takahashi, Hiroyuki
    Tsuzuki, Toyonori
    Varma, Murali
    Zhou, Ming
    Lindberg, Johan
    Lindskog, Cecilia
    Ruusuvuori, Pekka
    Wahlby, Carolina
    Gronberg, Henrik
    Rantalainen, Mattias
    Egevad, Lars
    Eklund, Martin
    LANCET ONCOLOGY, 2020, 21 (02): : 222 - 232
  • [40] Clinically significant prostate cancer detection on MRI: A radiomic shape features study
    Cuocolo, Renato
    Stanzione, Arnaldo
    Ponsiglione, Andrea
    Romeo, Valeria
    Verde, Francesco
    Creta, Massimiliano
    La Rocca, Roberto
    Longo, Nicola
    Pace, Leonardo
    Imbriaco, Massimo
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 : 144 - 149