Extended Joint EVD Algorithm for Widely Linear ARMA Source Separation

被引:1
|
作者
Meziani, Saliha [1 ]
Mesloub, Ammar [1 ]
Belouchrani, Adel [2 ]
Abed-Meraim, Karim [3 ,4 ]
机构
[1] Ecole Mil Polytech, Signal Proc Lab, Bordj El Bahri 16046, Algeria
[2] Ecole Natl Polytech, Elect Engn Dept, LDCCP Lab, Algiers 16200, Algeria
[3] Univ Orleans, PRISME Lab, F-45100 Orleans, France
[4] AVITECH Inst, Hanoi, Angola
关键词
Source separation; widely linear auto regressivemoving average model; dependent sources; approximate joint diagonalization; joint eigen value decomposition; BLIND SOURCE SEPARATION; EIGENVALUE DECOMPOSITION; ORDER ESTIMATION; DIAGONALIZATION; IDENTIFICATION;
D O I
10.1109/TSP.2023.3322807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a new approximate joint diagonalization problem is formulated for the blind separation of possibly dependent sources, modelled as widely linear autoregressive moving average (WL-ARMA) signals. The latter modelling gives rise to two sets of matrix parameters, sharing each a specific diagonal structure transform. A new method is proposed to achieve the desired source separation using a novel extended joint eigen value decomposition (JEVD) of both sets of matrices. The separation method proceeds in two steps, the first one identifies the WL-ARMA parameters, while the second step identifies the separation matrix through the extended JEVD of two particular matrix sets. We have developed a new Jacobi-like JEVD algorithm based on Shear and Givens rotations. This algorithm, referred to as Extended Optimal Phase Joint Eigen Value Decomposition, realizes the simultaneous diagonalization of two sets of matrices with different structures and outperforms the existing algorithms in difficult scenarios. Simulation results are provided to illustrate the effectiveness of the proposed algorithm.
引用
收藏
页码:3667 / 3678
页数:12
相关论文
共 50 条
  • [31] Joint Blind Source Separation Algorithm Based on Decomposition of Higher-Order Cumulant Tensors
    Ji C.
    Liu M.-X.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (01): : 26 - 32
  • [32] Blind source separation algorithm for convolutive speech mixtures using joint block-diagonalization
    Xu, Shun
    Chen, Shao-Rong
    Liu, Yu-Lin
    Zhendong yu Chongji/Journal of Vibration and Shock, 2007, 26 (08): : 86 - 90
  • [33] Accelerating the Convergence of the Widely Linear LMS Algorithm for Channel Equalization
    de Aquino, Francisco J. A.
    da Rocha, Carlos A. F.
    Resende, Leonardo S.
    PROCEEDINGS OF THE IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 2006, : 734 - +
  • [34] A Quaternion Widely Linear One-stage Prediction Algorithm
    Fernandez-Alcala, R. M.
    Navarro-Moreno, J.
    Ruiz-Molina, J. C.
    Jahanchahi, C.
    Dini, D. H.
    PIERS 2012 MOSCOW: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2012, : 1355 - 1358
  • [35] A NOVEL REDUCED-COMPLEXITY WIDELY LINEAR QLMS ALGORITHM
    Almeida Neto, Fernando G.
    Nascimento, Vitor H.
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 81 - 84
  • [36] A blind widely linear minimum-output-energy algorithm
    Schober, R
    Gerstacker, WH
    Lampe, LHJ
    WCNC 2003: IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE RECORD, VOLS 1-3, 2003, : 612 - 617
  • [37] A fast algorithm for blind source separation
    Xu, Xian-Feng
    Feng, Da-Zheng
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (12): : 2780 - 2785
  • [38] JOINT DEREVERBERATION AND SEPARATION WITH ITERATIVE SOURCE STEERING
    Nakashima, Taishi
    Scheibler, Robin
    Togami, Masahito
    Ono, Nobutaka
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 216 - 220
  • [39] DIRECTIONAL NMF FOR JOINT SOURCE LOCALIZATION AND SEPARATION
    Traa, Johannes
    Smaragdis, Paris
    Stein, Noah D.
    Wingate, David
    2015 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2015,
  • [40] Joint Multichannel Deconvolution and Blind Source Separation
    Jiang, Ming
    Bobin, Jerome
    Starck, Jean-Luc
    SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (04): : 1997 - 2021