New Class of High-Energy, High-Power Capacitive Devices Enabled by Stabilized Lithium Metal Anodes

被引:1
|
作者
Shaibani, Mahdokht [1 ,2 ,8 ]
Abedin, Md. Joynul [1 ,2 ]
Mirshekarloo, Meysam Sharifzadeh [1 ]
Griffith, James C. [3 ,4 ]
Singh, Ruhani [5 ]
Aitchison, Phillip [6 ]
Hill, Matthew R. [5 ,7 ]
Majumder, Mainak [1 ,2 ]
机构
[1] Monash Univ, Dept Mech & Aerosp Engn, Nanoscale Sci & Engn Lab NSEL, Clayton, Vic 3168, Australia
[2] Monash Univ, ARC Res Hub Adv Mfg Two Dimens Mat AM2D, Clayton, Vic 3800, Australia
[3] Monash Univ, Monash Xray Platform, Clayton, Vic 3800, Australia
[4] Univ Bristol, Bristol Composites Inst, CAME Sch Engn, Bristol BS8 1TR, England
[5] CSIRO, Clayton, Vic 3168, Australia
[6] Ion Ind Ltd, Mt Waverley, Vic 3149, Australia
[7] Monash Univ, Dept Chem & Biol Engn, Clayton, Vic 3168, Australia
[8] RMIT Univ, Dept Chem & Environm Engn, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
lithium metal capacitor; lithium hybrid device; lithium metal stabilization; lithium polysulfides; stable SEI; SOLID-ELECTROLYTE INTERPHASE; BATTERY; DENSITY;
D O I
10.1021/acsami.3c06591
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-ion capacitors (LIC) combine the energy storagemechanismsof lithium-ion batteries and electric double layer capacitors (EDLC)and are supposed to promise the best of both worlds: high energy andpower density combined with a long life. However, the lack of lithiumcation sources in the carbon cathode demands the cumbersome step ofprelithiation of the graphite anode, mainly by using sacrificial lithiummetal, hindering the mass adoption of LICs. Here, in a conceptuallynew class of devices termed lithium metal capacitors (LMC), we replacethe graphite anode with a lithium metal anode stabilized by a complexyet stable solid-electrolyte interface (SEI). Via a specialized formationprocess, the well-explored synergetic reaction between the LiNO3 additive and controlled amounts of polysulfides in an ether-basedelectrolyte stabilizes the SEI on the lithium metal electrode. Optimizeddevices at the coin cell level deliver 55 mAh g(-1) at a fast 30C discharge rate and maintain 95% capacity after 8000cycles. At the pouch-cell level, energy densities of 13 Wh kg(-1) are readily achieved, indicating the transferabilityof the technology to practical scales. The LMC, a new class of capacitivedevice, eliminates the prelithiation process of the conventional LIC,allowing practical production at scale and offering exciting avenuesfor exploring versatile cathode chemistries on account of using alithium metal anode.
引用
收藏
页码:37454 / 37466
页数:13
相关论文
共 50 条
  • [31] Graphene coating on silicon anodes enabled by thermal surface modification for high-energy lithium-ion batteries
    Kim, Sang Cheol
    Huang, William
    Zhang, Zewen
    Wang, Jiangyan
    Kim, Yongseok
    Jeong, You Kyeong
    Oyakhire, Solomon T.
    Yang, Yufei
    Cui, Yi
    MRS BULLETIN, 2022, 47 (02) : 127 - 133
  • [32] Graphene coating on silicon anodes enabled by thermal surface modification for high-energy lithium-ion batteries
    Sang Cheol Kim
    William Huang
    Zewen Zhang
    Jiangyan Wang
    Yongseok Kim
    You Kyeong Jeong
    Solomon T. Oyakhire
    Yufei Yang
    Yi Cui
    MRS Bulletin, 2022, 47 : 127 - 133
  • [33] High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes
    Lee, Yong-Gun
    Fujiki, Satoshi
    Jung, Changhoon
    Suzuki, Naoki
    Yashiro, Nobuyoshi
    Omoda, Ryo
    Ko, Dong-Su
    Shiratsuchi, Tomoyuki
    Sugimoto, Toshinori
    Ryu, Saebom
    Ku, Jun Hwan
    Watanabe, Taku
    Park, Youngsin
    Aihara, Yuichi
    Im, Dongmin
    Han, In Taek
    NATURE ENERGY, 2020, 5 (04) : 299 - 308
  • [34] Anion Storage Chemistry of Organic Cathodes for High-Energy and High-Power Density Divalent Metal Batteries
    Xiu, Yanlei
    Mauri, Anna
    Dinda, Sirshendu
    Pramudya, Yohanes
    Ding, Ziming
    Diemant, Thomas
    Sarkar, Abhishek
    Wang, Liping
    Li, Zhenyou
    Wenzel, Wolfgang
    Fichtner, Maximilian
    Zhao-Karger, Zhirong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (02)
  • [35] Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
    Jianlin Li
    Zhijia Du
    Rose E. Ruther
    Seong Jin AN
    Lamuel Abraham David
    Kevin Hays
    Marissa Wood
    Nathan D. Phillip
    Yangping Sheng
    Chengyu Mao
    Sergiy Kalnaus
    Claus Daniel
    David L. Wood
    JOM, 2017, 69 : 1484 - 1496
  • [36] Petroleum Coke as an Efficient Single Carbon Source for High-Energy and High-Power Lithium-Ion Capacitors
    Veluri, Pavan S.
    Katchala, Nanaji
    Anandan, S.
    Pramanik, M.
    NarayanSrinivasan, Krishnamurthy
    Ravi, B.
    Rao, Tata N.
    ENERGY & FUELS, 2021, 35 (10) : 9010 - 9016
  • [37] HIGH-ENERGY AND HIGH-POWER ION AND NEUTRAL BEAM SOURCE DEVELOPMENT
    HEMSWORTH, RS
    HOLMES, AJT
    NUCLEAR ENERGY-JOURNAL OF THE BRITISH NUCLEAR ENERGY SOCIETY, 1991, 30 (06): : 361 - 383
  • [38] High-energy and high-power Yb:KGW femtosecond regenerative amplifier
    Miura, Taisuke
    Ito, Shinji
    COMMERCIAL AND BIOMEDICAL APPLICATIONS OF ULTRAFAST LASERS IX, 2009, 7203
  • [39] HIGH-POWER HIGH-ENERGY TEA CO2-LASER
    RICHARDS.MC
    BURTYN, P
    ALCOCK, AJ
    LEOPOLD, K
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1972, QE 8 (06) : 598 - &
  • [40] Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
    Li, Jianlin
    Du, Zhijia
    Ruther, Rose E.
    An, Seong Jin
    David, Lamuel Abraham
    Hays, Kevin
    Wood, Marissa
    Phillip, Nathan D.
    Sheng, Yangping
    Mao, Chengyu
    Kalnaus, Sergiy
    Daniel, Claus
    Wood, David L., III
    JOM, 2017, 69 (09) : 1484 - 1496