Can machine learning methods predict beta?

被引:0
|
作者
Alanis, Emmanuel [1 ,2 ]
Lesseig, Vance [1 ]
Payne, Janet D. [1 ]
Quijano, Margot [1 ]
机构
[1] Texas State Univ, McCoy Coll Business Adm, Dept Finance & Econ, San Marcos, TX USA
[2] Texas State Univ, McCoy Coll Business Adm, Dept Finance & Econ, McCoy Hall 544, 601 Univ Dr, San Marcos, TX 78666 USA
关键词
Equity beta; asset beta; machine learning; comparable company analysis; G30; G31; COST; EQUITY; RISK;
D O I
10.1080/00036846.2024.2331039
中图分类号
F [经济];
学科分类号
02 ;
摘要
It is common to estimate equity betas for private firms or non-traded assets through a comparable company analysis (CCA) of peer firms. Previous literature has questioned the accuracy of those estimates. We test if Machine Learning (ML) algorithms can provide superior forecasts. In out-of-sample tests from 1990 to 2021, we find that ML predictions reduce the mean absolute error by over 42% relative to the CCA. The improved accuracy of ML is most pronounced for smaller, younger firms with different capital structure from their peer group, suggesting potential large improvements are possible by applying ML methods to private firm valuation.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Machine learning methods to predict outcomes of pharmacological treatment in psychosis
    Lorenzo Del Fabro
    Elena Bondi
    Francesca Serio
    Eleonora Maggioni
    Armando D’Agostino
    Paolo Brambilla
    [J]. Translational Psychiatry, 13
  • [32] Application of machine learning methods to predict drought cost in France
    Heranval, Antoine
    Lopez, Olivier
    Thomas, Maud
    [J]. EUROPEAN ACTUARIAL JOURNAL, 2023, 13 (02) : 731 - 753
  • [33] Application of machine learning methods to predict drought cost in France
    Antoine Heranval
    Olivier Lopez
    Maud Thomas
    [J]. European Actuarial Journal, 2023, 13 : 731 - 753
  • [34] Explainable machine learning methods to predict postpartum depression risk
    Shivaprasad, Susmita
    Chadaga, Krishnaraj
    Sampathila, Niranjana
    Prabhu, Srikanth
    Chadaga P, Rajagopala
    K S, Swathi
    [J]. Systems Science and Control Engineering, 2024, 12 (01):
  • [35] Machine learning can accurately predict development of Inflammatory Bowel Disease
    Dyer, E.
    Kliper, E.
    Zamstein, N.
    Hodik, G.
    Kariv, R.
    Cohen, N. A.
    [J]. JOURNAL OF CROHNS & COLITIS, 2023, 17 : I412 - I414
  • [36] MACHINE LEARNING CAN ACCURATELY PREDICT DEVELOPMENT OF INFLAMMATORY BOWEL DISEASE
    Dyer, Emma C.
    Kliper, Efrat
    Zamstein, Noa
    Chodick, Gabriel
    Kariv, Revital
    Cohen, Nathaniel A.
    [J]. GASTROENTEROLOGY, 2023, 164 (06) : S664 - S664
  • [37] Can machine learning predict friction from third body morphology?
    Bouchot, Alizee
    Ferrieux, Amandine
    Debayle, Johan
    Mollon, Guilhem
    Descartes, Sylvie
    [J]. TRIBOLOGY INTERNATIONAL, 2024, 193
  • [38] MLHeartDis:Can Machine Learning Techniques Enable to Predict Heart Diseases?
    Mamun, Muntasir
    Uddin, Md. Milon
    Tiwari, Vivek Kumar
    Islam, Asm Mohaimenul
    Ferdous, Ahmed Ullah
    [J]. 2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 561 - 565
  • [39] Can Machine Learning Algorithms Successfully Predict Grassland Aboveground Biomass?
    Wang, Yue
    Qin, Rongzhu
    Cheng, Huzi
    Liang, Tiangang
    Zhang, Kaiping
    Chai, Ning
    Gao, Jinlong
    Feng, Qisheng
    Hou, Mengjing
    Liu, Jie
    Liu, Chenli
    Zhang, Wenjuan
    Fang, Yanjie
    Huang, Jie
    Zhang, Feng
    [J]. REMOTE SENSING, 2022, 14 (16)
  • [40] Personality Traits Can Predict Architectural Preferences: A Machine Learning Approach
    Tafti, Mohsen Dehghani
    Ahmadzad-Asl, Masoud
    Memarian, Gholamhossein
    Tafti, Mehrnaz Fallah
    Rajimehr, Reza
    Soltani, Sarvenaz
    Mirfazeli, Fatemeh Sadat
    Vahabie, Abdol-Hossein
    Moein, Shima T.
    Mozaffar, Farhang
    [J]. PSYCHOLOGY OF AESTHETICS CREATIVITY AND THE ARTS, 2022,