Bloch sphere analog of qudits using Heisenberg-Weyl Operators

被引:0
|
作者
Sharma, Gautam [1 ,2 ]
Ghosh, Sibasish [2 ]
Sazim, Sk [1 ,3 ]
机构
[1] Polish Acad Sci, Ctr Theoret Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Inst Math Sci CI Homi Bhabha Natl Inst, Opt & Quantum Informat Grp, CIT Campus, Chennai 600113, India
[3] Slovak Acad Sci, Inst Phys, Dubravska cesta 9, Bratislava 84511, Slovakia
基金
欧盟地平线“2020”;
关键词
Heisenberg-Weyl operator basis; Bloch Sphere; density matrix; mutually unbiased bases; unital maps; DENSITY-MATRICES; VECTOR; SPACE; SYSTEMS; STATE;
D O I
10.1088/1402-4896/ad2ccf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an analogous Bloch sphere representation of higher-level quantum systems using the Heisenberg-Weyl operator basis. We introduce a parametrization method that will allow us to identify a real-valued Bloch vector for an arbitrary density operator. Before going into arbitrary d-level (d >= 3) quantum systems (qudits), we start our analysis with three-level ones (qutrits). It is well known that we need at least eight real parameters in the Bloch vector to describe arbitrary three-level quantum systems (qutrits). However, using our method we can divide these parameters into four weight, and four angular parameters, and find that the weight parameters are inducing a unit sphere in four-dimension. And, the four angular parameters determine whether a Bloch vector is physical. Therefore, unlike its qubit counterpart, the qutrit Bloch sphere does not exhibit a solid structure. Importantly, this construction allows us to define different properties of qutrits in terms of Bloch vector components. We also examine the two and three-dimensional sections of the sphere, which reveal a non-convex yet closed structure for physical qutrit states. Further, we apply our representation to derive mutually unbiased bases (MUBs), characterize unital maps for qutrits, and assess ensembles using the Hilbert-Schmidt and Bures metrics. Moreover, we extend this construction to qudits, showcasing its potential applicability beyond the qutrit scenario.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Minimally disturbing Heisenberg-Weyl symmetric measurements using hard-core collisions of Schrodinger particles
    Janzing, Dominik
    Decker, Thomas
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [42] QUANTUM DOUBLE STRUCTURE FOR HEISENBERG-WEYL ALGEBRA WITHOUT Q-DEFORMATION
    SUN, CP
    GE, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23): : 7031 - 7040
  • [43] Noncommutative Reduction of the Bloch Equation in the Heisenberg–Weyl Group
    D. A. Ivanov
    A. I. Breev
    Russian Physics Journal, 2018, 61 : 556 - 565
  • [44] Tighter Heisenberg-Weyl type uncertainty principle associated with quaternion wavelet transform
    Wang, Xinyu
    Zheng, Shenzhou
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (01)
  • [45] The Heisenberg-Weyl Algebra on the Circle and a Related Quantum Mechanical Model for Hindered Rotation
    Kouri, Donald J.
    Markovich, Thomas
    Maxwell, Nicholas
    Bodmann, Bernhard G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (26): : 7698 - 7705
  • [46] Coherent states of the deformed Heisenberg-Weyl algebra in non-commutative space
    Yin, QJ
    Zhang, JZ
    PHYSICS LETTERS B, 2005, 613 (1-2) : 91 - 96
  • [47] Weyl transforms and convolution operators on the Heisenberg group
    Wong, M. W.
    Pseudo-Differential Operators and Related Topics, 2006, 164 : 115 - 120
  • [48] Approximation of Weyl-Heisenberg Frame Operators
    Nambudiri, T. C. Easwaran
    Parthasarathy, K.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (07) : 1565 - 1575
  • [49] Generalised Weyl-Heisenberg frame operators
    Nambudiri, T. C. Easwaran
    Parthasarathy, K.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (01): : 44 - 53
  • [50] SHARP INEQUALITIES FOR WEYL OPERATORS AND HEISENBERG GROUPS
    KLEIN, A
    RUSSO, B
    MATHEMATISCHE ANNALEN, 1978, 235 (02) : 175 - 194