Bloch sphere analog of qudits using Heisenberg-Weyl Operators

被引:0
|
作者
Sharma, Gautam [1 ,2 ]
Ghosh, Sibasish [2 ]
Sazim, Sk [1 ,3 ]
机构
[1] Polish Acad Sci, Ctr Theoret Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Inst Math Sci CI Homi Bhabha Natl Inst, Opt & Quantum Informat Grp, CIT Campus, Chennai 600113, India
[3] Slovak Acad Sci, Inst Phys, Dubravska cesta 9, Bratislava 84511, Slovakia
基金
欧盟地平线“2020”;
关键词
Heisenberg-Weyl operator basis; Bloch Sphere; density matrix; mutually unbiased bases; unital maps; DENSITY-MATRICES; VECTOR; SPACE; SYSTEMS; STATE;
D O I
10.1088/1402-4896/ad2ccf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an analogous Bloch sphere representation of higher-level quantum systems using the Heisenberg-Weyl operator basis. We introduce a parametrization method that will allow us to identify a real-valued Bloch vector for an arbitrary density operator. Before going into arbitrary d-level (d >= 3) quantum systems (qudits), we start our analysis with three-level ones (qutrits). It is well known that we need at least eight real parameters in the Bloch vector to describe arbitrary three-level quantum systems (qutrits). However, using our method we can divide these parameters into four weight, and four angular parameters, and find that the weight parameters are inducing a unit sphere in four-dimension. And, the four angular parameters determine whether a Bloch vector is physical. Therefore, unlike its qubit counterpart, the qutrit Bloch sphere does not exhibit a solid structure. Importantly, this construction allows us to define different properties of qutrits in terms of Bloch vector components. We also examine the two and three-dimensional sections of the sphere, which reveal a non-convex yet closed structure for physical qutrit states. Further, we apply our representation to derive mutually unbiased bases (MUBs), characterize unital maps for qutrits, and assess ensembles using the Hilbert-Schmidt and Bures metrics. Moreover, we extend this construction to qudits, showcasing its potential applicability beyond the qutrit scenario.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Heisenberg-Weyl Observables: Bloch vectors in phase space
    Asadian, Ali
    Erker, Paul
    Huber, Marcus
    Klockl, Claude
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [2] Noncommutative Reduction of the Bloch Equation in the Heisenberg-Weyl Group
    Ivanov, D. A.
    Breev, A. I.
    RUSSIAN PHYSICS JOURNAL, 2018, 61 (03) : 556 - 565
  • [3] Quantum Heisenberg-Weyl algebras
    Ballesteros, A
    Herranz, FJ
    Parashar, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (07): : L149 - L154
  • [4] ON THE REPRESENTATIONS OF GLQ(N) USING THE HEISENBERG-WEYL RELATIONS
    CHAKRABARTI, R
    JAGANNATHAN, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (08): : 1709 - 1720
  • [5] LIE STRUCTURE OF THE HEISENBERG-WEYL ALGEBRA
    Cantuba, Rafael Reno S.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 35 : 32 - 60
  • [6] DISCRETE ANALOGS OF THE HEISENBERG-WEYL ALGEBRA
    FEINSILVER, P
    MONATSHEFTE FUR MATHEMATIK, 1987, 104 (02): : 89 - 108
  • [7] OAM tomography with Heisenberg-Weyl observables
    Pǎlici, Alexandra Maria
    Isdrailǎ, Tudor-Alexandru
    Ataman, Stefan
    Ionicioiu, Radu
    Ionicioiu, Radu (r.ionicioiu@theory.nipne.ro), 1600, Institute of Physics Publishing (05):
  • [8] Graph model of the Heisenberg-Weyl algebra
    Blasiak, P.
    Horzela, A.
    Duchamp, G. H. E.
    Penson, K. A.
    Solomon, A. I.
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213
  • [9] OAM tomography with Heisenberg-Weyl observables
    Palici, Alexandra Maria
    Isdraila, Tudor-Alexandru
    Ataman, Stefan
    Ionicioiu, Radu
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04):
  • [10] Polynomial deformations of the Heisenberg-Weyl algebra
    Carballo, JM
    Fernández, DJ
    Negro, J
    Nieto, LM
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON SQUEEZED STATES AND UNCERTAINTY RELATIONS, 2003, : 73 - +