Trustworthy Artificial Intelligence: Design of AI Governance Framework

被引:0
|
作者
Sharma, Sanur [1 ,2 ]
机构
[1] IILM Univ, Delhi, India
[2] Gurugram & Guru Gobind Singh Indraprastha Univ GGS, Delhi, India
关键词
Trustworthy AI; AI governance; ethical AI; automation bias; societal; regulatory framework;
D O I
10.1080/09700161.2023.2288994
中图分类号
D81 [国际关系];
学科分类号
030207 ;
摘要
This article presents the various challenges in the current system of AI governance and the correlation between data, algorithm, technology, governance, and geopolitics surrounding its successful implementation. The focal point of the article is the Adaptive-Hybrid AI Governance framework based on technical, ethical, and societal regulatory mechanisms that models trustworthy AI and the risks associated with it. The article highlights the need for trustworthy AI and how major countries are shaping their AI regulatory mechanisms. It presents a case study on AI governance in defence that elucidates ethical AI governance through various use cases.
引用
收藏
页码:443 / 464
页数:22
相关论文
共 50 条
  • [21] AI Design: A Responsible Artificial Intelligence Framework for Prefilling Impact Assessment Reports
    Bogucka, Edyta
    Constantinides, Marios
    Scepanovic, Sanja
    Quercia, Daniele
    IEEE Internet Computing, 2024, 28 (05) : 37 - 45
  • [22] THE GOVERNANCE OF ARTIFICIAL INTELLIGENCE: CONTEXT AND GENERAL FRAMEWORK
    Robles Carrillo, Margarita
    REVISTA ELECTRONICA DE ESTUDIOS INTERNACIONALES, 2020, (39):
  • [23] Design of SW Framework for Trustworthy AI-Data Commons
    Lim, Sunhwan
    Suh, Young-Ho
    Park, Donghwan
    Woo, Sungpil
    Park, Chanwon
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1883 - 1885
  • [24] Toward a trustworthy and inclusive data governance policy for the use of artificial intelligence in Africa
    Effoduh, Jake Okechukwu
    Akpudo, Ugochukwu Ejike
    Kong, Jude Dzevela
    DATA & POLICY, 2024, 6
  • [25] Explainable and Trustworthy Artificial Intelligence
    Alonso-Moral, Jose Maria
    Mencar, Corrado
    Ishibuchi, Hisao
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 14 - 15
  • [26] Toward Trustworthy Artificial Intelligence: An Integrated Framework Approach Mitigating Threats
    Tenn, King-Ping
    Chang, Yu-Wei
    Chen, Hong-Yen
    Fan, Teng-Kai
    Lin, Tsungnan
    COMPUTER, 2024, 57 (09) : 57 - 67
  • [27] An Operational Framework for Guiding Human Evaluation in Explainable and Trustworthy Artificial Intelligence
    Confalonieri, Roberto
    Alonso-Moral, Jose Maria
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (01) : 18 - 28
  • [28] Trustworthy Artificial Intelligence: A Review
    Kaur, Davinder
    Uslu, Suleyman
    Rittichier, Kaley J.
    Durresi, Arjan
    ACM COMPUTING SURVEYS, 2023, 55 (02)
  • [29] The Facets of Artificial Intelligence: A Framework to Track the Evolution of AI
    Martinez-Plumed, Fernando
    Loe, Bao Sheng
    Flach, Peter
    HEigeartaigh, Sean O.
    Vold, Karina
    Hernandez-Orallo, Jose
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5180 - 5187
  • [30] Secure and Trustworthy Artificial Intelligence-extended Reality (AI-XR) for Metaverses
    Qayyum, Adnan
    Butt, Muhammad Atif
    Ali, Hassan
    Usman, Muhammad
    Halabi, Osama
    Al-Fuqaha, Ala
    Abbasi, Qammer H.
    Imran, Muhammad Ali
    Qadir, Junaid
    ACM COMPUTING SURVEYS, 2024, 56 (07) : 1 - 38