Effect of tartaric acid on the early hydration process and water resistance of magnesium oxychloride cement

被引:20
|
作者
Xu, Mengze [1 ]
Chen, Xiaoyang [2 ]
Han, Lu [2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Mech & Civil Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Chem Engn, Anshan 114051, Liaoning, Peoples R China
[3] Univ Sci & Technol Liaoning, Sch Mat & Met, Anshan 114051, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Magnesium oxychloride cement; Tartaric acid; Hydration behavior; Water resistance; Coordination; PHOSPHORIC-ACID; REACTIVE MGO; PERFORMANCE; MECHANISM;
D O I
10.1016/j.jobe.2023.105838
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The main type of cement used worldwide is Portland cement with an annual production of about 4 billion tons and CO2 emissions of about 8% of total global anthropogenic greenhouse gas emis-sions. One of magnesium binders being investigated to mitigate this negative effect is associated with the use of magnesium oxychloride (MOC) cement. Different from that of Portland cement, the main composition of MOC cement is magnesia rather than calcia. MOC cement has excellent properties, including low carbon, light weight, low thermal conductivity, and high early strength, but it is not extensively applied in practical engineering due to its poor water resistance. This study investigated the effect of tartaric acid (TA) addition on the water resistance of MOC ce-ment, as well as its effect on the setting time, hydration, compressive strength, phase composi-tion, pore structure, and microstructure. The results show that the hydration of MOC cement was a multi-step process. The initial precipitate was 2 Mg(OH)2 & BULL;MgCl2 & BULL;2H2O, which was ultimately transformed 5 Mg(OH)2 & BULL;MgCl2 & BULL;8H2O. TA can adsorb on the surfaces of MgO particles via a coordi-nation effect, which increased the surface negative charge concentration of MgO. This inhibited the dissolution of MgO and the formation of 2 Mg(OH)2 & BULL;MgCl2 & BULL;2H2O, prolonging the setting time of MOC cement. The addition of TA decreased compressive strength and increased the total porosity of MOC cement, however, promoted the formation of amorphous 5 Mg(OH)2 & BULL;MgCl2 & BULL;8H2O in matrix, resulting in an improvement in the water resistance, a de-crease in dissolved concentration of Cl-, and an increase in the content of gel pores of MOC ce-ment.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of nano-silica@ chitosan phosphate ester on the mechanical properties and water resistance of magnesium oxychloride cement
    Liu, Qihao
    Jia, Qian
    Chen, Ruoyu
    ADVANCES IN CEMENT RESEARCH, 2024,
  • [42] Research on water resistance and mechanism of magnesium oxychloride cement foam concrete with compound modifiers
    Wang, Luming
    Feng, Koubao
    Chen, Xuefei
    Gongneng Cailiao/Journal of Functional Materials, 2015, 46 (12): : 12009 - 12013
  • [43] Study on Water Resistance of Environmentally Friendly Magnesium Oxychloride Cement for Waste Wood Solidification
    Zhang, Feng-Jun
    Sun, Xian-Yang
    Li, Xuan
    Zhang, Dan
    Xie, Wen-Jie
    Liu, Jin
    Oh, Won-Chun
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2018, 55 (05) : 446 - 451
  • [44] Mechanical Properties and Water Resistance of Magnesium Oxychloride Cement-Solidified Residual Sludge
    Ma, Haiqiang
    Liang, Jiling
    Wang, Lu
    He, Han
    Wang, Wenwu
    Han, Tingting
    Xu, Ziting
    Han, Jie
    PROCESSES, 2023, 11 (02)
  • [45] Effects of Fly Ash and Hexadecyltrimethoxysilane on the Compressive Properties and Water Resistance of Magnesium Oxychloride Cement
    Guan, Bowen
    He, Zhenqing
    Wei, Fulu
    Wang, Faping
    Yu, Jincheng
    POLYMERS, 2023, 15 (01)
  • [46] Effect of pulverized fuel ash and CO2 curing on the water resistance of magnesium oxychloride cement (MOC)
    He, Pingping
    Poon, Chi Sun
    Tsang, Daniel C. W.
    CEMENT AND CONCRETE RESEARCH, 2017, 97 : 115 - 122
  • [47] Effect of pressing pressure on the mechanical properties and water resistance of straw/sawdust-magnesium oxychloride cement composite
    He, Hui
    Zhang, Huagang
    Yang, Jiaojiao
    Fan, Zongyuan
    Chen, Wei
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 383
  • [48] Effect of boric acid and triethanolamine compound on early hydration properties of magnesium potassium phosphate cement
    Wei, Xin
    Lin, Liming
    Zhang, Xiuzhi
    Zhao, Guipeng
    Wang, Jinbang
    Jiang, Congcong
    Feng, Shuxia
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449
  • [49] Promoting effect and mechanism of several inorganic salts on hydration reaction of magnesium oxychloride cement at low temperature
    Yan, Zhengbin
    Yang, Pengwei
    Huang, Jiaxin
    Jia, Qian
    Wen, Jing
    Dong, Jinmei
    Zheng, Weixin
    Chang, Chenggong
    Wang, Hongning
    Chen, Ruoyu
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 317
  • [50] The effect of aluminate minerals on the phases in magnesium oxychloride cement
    Deng, DH
    Zhang, CM
    CEMENT AND CONCRETE RESEARCH, 1996, 26 (08) : 1203 - 1211