Prediction of Functional Outcome in Stroke Patients with Proximal Middle Cerebral Artery Occlusions Using Machine Learning Models

被引:10
|
作者
Ozkara, Burak B. [1 ]
Karabacak, Mert [2 ]
Hamam, Omar [3 ]
Wang, Richard [3 ]
Kotha, Apoorva [3 ]
Khalili, Neda [3 ]
Hoseinyazdi, Meisam [3 ]
Chen, Melissa M. [1 ]
Wintermark, Max [1 ]
Yedavalli, Vivek S. [3 ]
机构
[1] MD Anderson Canc Ctr, Dept Neuroradiol, Houston, TX 77030 USA
[2] Mt Sinai Hlth Syst, Dept Neurosurg, New York, NY 10029 USA
[3] Johns Hopkins Univ Hosp, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21287 USA
关键词
ischemic stroke; machine learning; medical decision making; middle cerebral artery; artificial intelligence; ACUTE ISCHEMIC-STROKE; MECHANICAL THROMBECTOMY; VESSEL OCCLUSION; SCORE;
D O I
10.3390/jcm12030839
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
At present, clinicians are expected to manage a large volume of complex clinical, laboratory, and imaging data, necessitating sophisticated analytic approaches. Machine learning-based models can use this vast amount of data to create forecasting models. We aimed to predict short- and medium-term functional outcomes in acute ischemic stroke (AIS) patients with proximal middle cerebral artery (MCA) occlusions using machine learning models with clinical, laboratory, and quantitative imaging data as inputs. Included were consecutive AIS patients with MCA M1 and proximal M2 occlusions. The XGBoost, LightGBM, CatBoost, and Random Forest were used to predict the outcome. Minimum redundancy maximum relevancy was used for selecting features. The primary outcomes were the National Institutes of Health Stroke Scale (NIHSS) shift and the modified Rankin Score (mRS) at 90 days. The algorithm with the highest area under the receiver operating characteristic curve (AUROC) for predicting the favorable and unfavorable outcome groups at 90 days was LightGBM. Random Forest had the highest AUROC when predicting the favorable and unfavorable groups based on the NIHSS shift. Using clinical, laboratory, and imaging parameters in conjunction with machine learning, we accurately predicted the functional outcome of AIS patients with proximal MCA occlusions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine-learning-based outcome prediction in stroke patients with middle cerebral artery-M1 occlusions and early thrombectomy
    Hamann, Janne
    Herzog, Lisa
    Wehrli, Carina
    Dobrocky, Tomas
    Bink, Andrea
    Piccirelli, Marco
    Panos, Leonidas
    Kaesmacher, Johannes
    Fischer, Urs
    Stippich, Christoph
    Luft, Andreas R.
    Gralla, Jan
    Arnold, Marcel
    Wiest, Roland
    Sick, Beate
    Wegener, Susanne
    EUROPEAN JOURNAL OF NEUROLOGY, 2021, 28 (04) : 1234 - 1243
  • [2] Prediction of functional outcome using the novel asymmetric middle cerebral artery index in cryptogenic stroke patients
    Han, Minho
    Kim, Young Dae
    Park, Hyung Jong
    Hwang, In Gun
    Choi, Junghye
    Ha, Jimin
    Heo, Ji Hoe
    Nam, Hyo Suk
    PLOS ONE, 2019, 14 (01):
  • [3] Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients
    Monteiro, Miguel
    Fonseca, Ana Catarina
    Freitas, Ana Teresa
    Pinho e Melo, Teresa
    Francisco, Alexandre P.
    Ferro, Jose M.
    Oliveira, Arlindo L.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (06) : 1953 - 1959
  • [4] Resting state functional MRI improves outcome prediction in middle cerebral artery stroke
    Pinter, D.
    Gattringer, T.
    Fandler-Hoefler, S.
    Kneihsl, M.
    Eppinger, S.
    Deutschmann, H.
    Horner, S.
    Poltrum, B.
    Reishofer, G.
    Ropele, S.
    Enzinger, C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2020, 27 : 225 - 225
  • [5] RESTING STATE FUNCTIONAL MRI IMPROVES OUTCOME PREDICTION IN MIDDLE CEREBRAL ARTERY STROKE
    Pinter, D.
    Gattringer, T.
    Fandler-Hoefler, S.
    Kneihsl, M.
    Eppinger, S.
    Deutschmann, H.
    Horner, S.
    Poltrum, B.
    Reishofer, G.
    Ropele, S.
    Enzinger, C.
    INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (1_SUPPL) : 410 - 410
  • [6] Automated Prediction of Proximal Middle Cerebral Artery Occlusions in Noncontrast Brain Computed Tomography
    Kim, Pyeong Eun
    Yang, Hyojung
    Kim, Dongmin
    Sunwoo, Leonard
    Kim, Chi Kyung
    Kim, Beom Joon
    Kim, Joon-Tae
    Ryu, Wi-Sun
    Kim, Ho Sung
    STROKE, 2024, 55 (06) : 1609 - 1618
  • [7] Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models
    Alaka, Shakiru A.
    Menon, Bijoy K.
    Brobbey, Anita
    Williamson, Tyler
    Goyal, Mayank
    Demchuk, Andrew M.
    Hill, Michael D.
    Sajobi, Tolulope T.
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [8] Early rehabilitation outcome in patients with middle cerebral artery stroke
    Balaban, Birol
    Tok, Fatih
    Yavuz, Ferdi
    Yasar, Evren
    Alaca, Ridvan
    NEUROSCIENCE LETTERS, 2011, 498 (03) : 204 - 207
  • [9] The Comparison and Interpretation of Machine-Learning Models in Post-Stroke Functional Outcome Prediction
    Chang, Shih-Chieh
    Chu, Chan-Lin
    Chen, Chih-Kuang
    Chang, Hsiang-Ning
    Wong, Alice M. K.
    Chen, Yueh-Peng
    Pei, Yu-Cheng
    DIAGNOSTICS, 2021, 11 (10)
  • [10] Prevalence and outcome of young stroke patients with middle cerebral artery stenosis
    Xu, Wenjuan
    Zhang, Xiaoyu
    Chen, Huan
    Zhao, Zhangning
    Zhu, Meijia
    BMC NEUROLOGY, 2021, 21 (01)