Toward a Robust Sensor Fusion Step for 3D Object Detection on Corrupted Data

被引:1
|
作者
Wozniak, Maciej K. [1 ]
Karefjard, Viktor [1 ]
Thiel, Marko [2 ]
Jensfelt, Patric [1 ]
机构
[1] KTH Royal Inst Technol, Div Robot Percept & Learning, S-11428 Stockholm, Sweden
[2] Hamburg Univ Technol, Inst Tech Logist, D-21073 Hamburg, Germany
关键词
Object detection; segmentation and categorization; sensor fusion; deep learning for visual perception; LIDAR;
D O I
10.1109/LRA.2023.3313924
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Multimodal sensor fusion methods for 3D object detection have been revolutionizing the autonomous driving research field. Nevertheless, most of these methods heavily rely on dense LiDAR data and accurately calibrated sensors which is often not the case in real-world scenarios. Data from LiDAR and cameras often come misaligned due to the miscalibration, decalibration, or different frequencies of the sensors. Additionally, some parts of the LiDAR data may be occluded and parts of the data may be missing due to hardware malfunction or weather conditions. This work presents a novel fusion step that addresses data corruptions and makes sensor fusion for 3D object detection more robust. Through extensive experiments, we demonstrate that our method performs on par with state-of-the-art approaches on normal data and outperforms them on misaligned data.
引用
收藏
页码:7018 / 7025
页数:8
相关论文
共 50 条
  • [31] Towards Robust 3D Object Detection In Rainy Conditions
    Piroli, Aldi
    Dallabetta, Vinzenz
    Kopp, Johannes
    Walessa, Marc
    Meissner, Daniel
    Dietmayer, Klaus
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3471 - 3477
  • [32] LiDAR Snowfall Simulation for Robust 3D Object Detection
    Hahner, Martin
    Sakaridis, Christos
    Bijelic, Mario
    Heide, Felix
    Yu, Fisher
    Dai, Dengxin
    Van Gool, Luc
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16343 - 16353
  • [33] Robust 3D Object Detection in Cold Weather Conditions
    Piroli, Aldi
    Dallabetta, Vinzenz
    Walessa, Marc
    Meissner, Daniel
    Kopp, Johannes
    Dietmayer, Klaus
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 287 - 294
  • [34] MLOD: A multi-view 3D object detection based on robust feature fusion method
    Deng, Jian
    Czarnecki, Krzysztof
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 279 - 284
  • [35] Robust object segmentation and parametrization of 3D lidar data
    Kapp, A
    2005 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2005, : 694 - 699
  • [36] A Two-Phase Cross-Modality Fusion Network for Robust 3D Object Detection
    Jiao, Yujun
    Yin, Zhishuai
    SENSORS, 2020, 20 (21) : 1 - 14
  • [37] Multi-sensor fusion for robust localization with moving object segmentation in complex dynamic 3D scenes
    Li, Qipeng
    Zhuang, Yuan
    Huai, Jianzhu
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [38] AFTR: A Robustness Multi-Sensor Fusion Model for 3D Object Detection Based on Adaptive Fusion Transformer
    Zhang, Yan
    Liu, Kang
    Bao, Hong
    Qian, Xu
    Wang, Zihan
    Ye, Shiqing
    Wang, Weicen
    SENSORS, 2023, 23 (20)
  • [39] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [40] Fast All-day 3D Object Detection Based on Multi-sensor Fusion
    Xiao, Liang
    Zhu, Qi
    Chen, Tongtong
    Zhao, Dawei
    Shang, Erke
    Nie, Yiming
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 71 - 73