Estimating the Value-at-Risk by Temporal VAE

被引:3
|
作者
Buch, Robert [1 ]
Grimm, Stefanie [1 ]
Korn, Ralf [2 ]
Richert, Ivo [1 ]
机构
[1] Fraunhofer ITWM, Dept Financial Math, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
[2] RPTU Kaiserslautern Landau, Dept Math, Gottlieb Daimler Str 48, D-67663 Kaiserslautern, Germany
关键词
value-at-risk estimation; variational autoencoders; recurrent neural networks; risk-management; auto-pruning; posterior collapse;
D O I
10.3390/risks11050079
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Estimation of the value-at-risk (VaR) of a large portfolio of assets is an important task for financial institutions. As the joint log-returns of asset prices can often be projected to a latent space of a much smaller dimension, the use of a variational autoencoder (VAE) for estimating the VaR is a natural suggestion. To ensure the bottleneck structure of autoencoders when learning sequential data, we use a temporal VAE (TempVAE) that avoids the use of an autoregressive structure for the observation variables. However, the low signal-to-noise ratio of financial data in combination with the auto-pruning property of a VAE typically makes use of a VAE prone to posterior collapse. Therefore, we use annealing of the regularization to mitigate this effect. As a result, the auto-pruning of the TempVAE works properly, which also leads to excellent estimation results for the VaR that beat classical GARCH-type, multivariate versions of GARCH and historical simulation approaches when applied to real data.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Improving Hull and White's Method of Estimating Portfolio Value-at-Risk
    Changchien, Chang-Cheng
    Lin, Chu-Hsiung
    Yang, Hsien-Chueh Peter
    JOURNAL OF FORECASTING, 2012, 31 (08) : 706 - 720
  • [22] Unconditional density vs conditional density functions in estimating value-at-risk
    Chiu, Yen-Chen
    Chuang, I-Yuan
    APPLIED ECONOMICS, 2021, 53 (04) : 482 - 494
  • [23] Estimating future value-at-risk from value samples, and applications to future initial margin
    Ganesan, Narayan
    Hientzsch, Bernhard
    JOURNAL OF RISK, 2022, 24 (03): : 55 - 95
  • [24] Credible value-at-risk
    Mitic, Peter
    JOURNAL OF OPERATIONAL RISK, 2023, 18 (04): : 33 - 70
  • [25] Diversification and Value-at-Risk
    Perignon, Christophe
    Smith, Daniel R.
    JOURNAL OF BANKING & FINANCE, 2010, 34 (01) : 55 - 66
  • [26] Nonlinear value-at-risk
    Britten-Jones, M
    Schaefer, SM
    RISK MANAGEMENT AND REGULATION IN BANKING, 1999, : 115 - 143
  • [27] Stressed Value-at-Risk
    Dash, Jan
    2012 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING & ECONOMICS (CIFER), 2012, : 2 - 2
  • [28] Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk
    Chen, Yi-Hsuan
    Tu, Anthony H.
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2013, 27 : 514 - 528
  • [29] Incremental value-at-risk
    Mitic, Peter
    Cooper, James
    Bloxham, Nicholas
    JOURNAL OF RISK MODEL VALIDATION, 2020, 14 (01): : 65 - 101
  • [30] On Value-at-Risk and Conditional Value-at-Risk Measures for Intuitionistic and Picture Fuzzy Losses
    Akdemir, Hande Gunay
    Kocken, Hale Gonce
    Kara, Nurdan
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2023, 41 (06) : 583 - 617