Parameter-Efficient Sparse Retrievers and Rerankers Using Adapters

被引:2
|
作者
Pal, Vaishali [1 ,2 ]
Lassance, Carlos [2 ]
Dejean, Herve [2 ]
Clinchant, Stephane [2 ]
机构
[1] Univ Amsterdam, IRLab, Amsterdam, Netherlands
[2] Naver Labs Europe, Meylan, France
关键词
Adapters; Information Retrieval; Sparse neural retriever;
D O I
10.1007/978-3-031-28238-6_2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parameter-Efficient transfer learning with Adapters have been studied in Natural Language Processing (NLP) as an alternative to full fine-tuning. Adapters are memory-efficient and scale well with downstream tasks by training small bottle-neck layers added between transformer layers while keeping the large pretrained language model (PLMs) frozen. In spite of showing promising results in NLP, these methods are under-explored in Information Retrieval. While previous studies have only experimented with dense retriever or in a cross lingual retrieval scenario, in this paper we aim to complete the picture on the use of adapters in IR. First, we study adapters for SPLADE, a sparse retriever, for which adapters not only retain the efficiency and effectiveness otherwise achieved by finetuning, but are memory-efficient and orders of magnitude lighter to train. We observe that Adapters-SPLADE not only optimizes just 2% of training parameters, but outperforms fully fine-tuned counterpart and existing parameter-efficient dense IR models on IR benchmark datasets. Secondly, we address domain adaptation of neural retrieval thanks to adapters on cross-domain BEIR datasets and TripClick. Finally, we also consider knowledge sharing between rerankers and first stage rankers. Overall, our study complete the examination of adapters for neural IR. (The code can be found at: https://github.com/naver/splade/tree/adapter-splade.)
引用
收藏
页码:16 / 31
页数:16
相关论文
共 50 条
  • [31] Parameter-Efficient and Student-Friendly Knowledge Distillation
    Rao, Jun
    Meng, Xv
    Ding, Liang
    Qi, Shuhan
    Liu, Xuebo
    Zhang, Min
    Tao, Dacheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4230 - 4241
  • [32] A Parameter-efficient Language Extension Framework for Multilingual ASR
    Liu, Wei
    Hou, Jingyong
    Yang, Dong
    Cao, Muyong
    Lee, Tan
    INTERSPEECH 2024, 2024, : 3929 - 3933
  • [33] Differentially Private Adapters for Parameter Efficient Acoustic Modeling
    Ho, Chun-Wei
    Yang, Chao-Han Huck
    Siniscalchi, Sabato Marco
    INTERSPEECH 2023, 2023, : 839 - 843
  • [34] Parameter-Efficient Deep Neural Networks With Bilinear Projections
    Yu, Litao
    Gao, Yongsheng
    Zhou, Jun
    Zhang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 4075 - 4085
  • [35] Parameter-efficient Modularised Bias Mitigation via AdapterFusion
    Kumar, Deepak
    Lesota, Oleg
    Zerveas, George
    Cohen, Daniel
    Eickhoff, Carsten
    Schedl, Markus
    Rekabsaz, Navid
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 2738 - 2751
  • [36] Parameter-Efficient Finetuning for Robust Continual Multilingual Learning
    Badola, Kartikeya
    Dave, Shachi
    Talukdar, Partha
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9763 - 9780
  • [37] Efficient cosmological parameter sampling using sparse grids
    Frommert, M.
    Pflueger, D.
    Riller, T.
    Reinecke, M.
    Bungartz, H. -J.
    Ensslin, T. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 406 (02) : 1177 - 1189
  • [38] MiniALBERT: Model Distillation via Parameter-Efficient Recursive Transformers
    Nouriborji, Mohammadmahdi
    Rohanian, Omid
    Kouchaki, Samaneh
    Clifton, David A.
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1161 - 1173
  • [39] A Gradient Control Method for Backdoor Attacks on Parameter-Efficient Tuning
    Gu, Naibin
    Fu, Peng
    Liu, Xiyu
    Liu, Zhengxiao
    Lin, Zheng
    Wang, Weiping
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 3508 - 3520
  • [40] PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution
    Chen, Honghao
    Chu, Xiangxiang
    Ren, Yongjian
    Zhao, Xin
    Huang, Kaiqi
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 5557 - 5567