Privacy-preserving cancer type prediction with homomorphic encryption

被引:9
|
作者
Sarkar, Esha [1 ]
Chielle, Eduardo [2 ]
Gursoy, Gamze [3 ]
Chen, Leo [4 ]
Gerstein, Mark [3 ]
Maniatakos, Michail [2 ]
机构
[1] NYU, Tandon Sch Engn, Brooklyn, NY 11201 USA
[2] New York Univ Abu Dhabi, Ctr Cyber Secur, Abu Dhabi 129188, U Arab Emirates
[3] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[4] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
关键词
D O I
10.1038/s41598-023-28481-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer genomics tailors diagnosis and treatment based on an individual's genetic information and is the crux of precision medicine. However, analysis and maintenance of high volume of genetic mutation data to build a machine learning (ML) model to predict the cancer type is a computationally expensive task and is often outsourced to powerful cloud servers, raising critical privacy concerns for patients' data. Homomorphic encryption (HE) enables computation on encrypted data, thus, providing cryptographic guarantees to protect privacy. But restrictive overheads of encrypted computation deter its usage. In this work, we explore the challenges of privacy preserving cancer type prediction using a dataset consisting of more than 2 million genetic mutations from 2713 patients for several cancer types by building a highly accurate ML model and then implementing its privacy preserving version in HE. Our solution for cancer type inference encodes somatic mutations based on their impact on the cancer genomes into the feature space and then uses statistical tests for feature selection. We propose a fast matrix multiplication algorithm for HE-based model. Our final model achieves 0.98 micro-average area under curve improving accuracy from 70.08 to 83.61% , being 550 times faster than the standard matrix multiplication-based privacy-preserving models. Our tool can be found at https:// github. com/ momal ab/ octal-candet.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Privacy-Preserving Deep Learning via Additively Homomorphic Encryption
    Moriai, Shiho
    [J]. 2019 IEEE 26TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2019, : 198 - 198
  • [32] Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption
    Xinhao Yan
    Siqin Zhuo
    Yancheng Wu
    Bo Chen
    [J]. Journal of Beijing Institute of Technology, 2022, 31 (06) : 551 - 558
  • [33] Optimized Privacy-Preserving CNN Inference With Fully Homomorphic Encryption
    Kim, Dongwoo
    Guyot, Cyril
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 2175 - 2187
  • [34] Privacy-preserving using homomorphic encryption in Mobile IoT systems
    Ren, Wang
    Tong, Xin
    Du, Jing
    Wang, Na
    Li, Shan Cang
    Min, Geyong
    Zhao, Zhiwei
    Bashir, Ali Kashif
    [J]. COMPUTER COMMUNICATIONS, 2021, 165 : 105 - 111
  • [35] Privacy-Preserving Convolutional Neural Networks Using Homomorphic Encryption
    Wingarz, Tatjana
    Gomez-Barrero, Marta
    Busch, Christoph
    Fischer, Mathias
    [J]. 2022 INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF), 2022,
  • [36] Multicenter Privacy-Preserving Cox Analysis Based on Homomorphic Encryption
    Lu, Yao
    Tian, Yu
    Zhou, Tianshu
    Zhu, Shiqiang
    Li, Jingsong
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3310 - 3320
  • [37] Privacy-preserving approximate GWAS computation based on homomorphic encryption
    Kim, Duhyeong
    Son, Yongha
    Kim, Dongwoo
    Kim, Andrey
    Hong, Seungwan
    Cheon, Jung Hee
    [J]. BMC MEDICAL GENOMICS, 2020, 13 (Suppl 7)
  • [38] Practical Privacy-Preserving Data Science With Homomorphic Encryption: An Overview
    Iezzi, Michela
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3979 - 3988
  • [39] Privacy-preserving iris authentication using fully homomorphic encryption
    Mahesh Kumar Morampudi
    Munaga V. N. K. Prasad
    U. S. N. Raju
    [J]. Multimedia Tools and Applications, 2020, 79 : 19215 - 19237
  • [40] Practical Privacy-Preserving Medical Diagnosis using Homomorphic Encryption
    Carpov, Sergiu
    Thanh Hai Nguyen
    Sirdey, Renaud
    Constantino, Gianpiero
    Martinelli, Fabio
    [J]. PROCEEDINGS OF 2016 IEEE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2016, : 593 - 599