Characterization of a supersonic molecular beam for charged particle beam profile monitor

被引:3
|
作者
Zhang, H. D. [1 ,2 ]
Salehilashkajani, A. [1 ,2 ]
Sedlacek, O. [1 ,2 ,3 ]
Welsch, C. P. [1 ,2 ]
机构
[1] Univ Liverpool, Liverpool L69 7ZX, Merseyside, England
[2] Cockcroft Inst, Warrington WA4 4AD, Cheshire, England
[3] CERN, CH-1211 Geneva, Switzerland
关键词
Supersonic gas jet; Density measurement; Non-invasive; Beam profile monitor; Supersonic molecular beam; DENSITY-MEASUREMENTS; GAS-TARGET; SHEET BEAM; FLOW; ION;
D O I
10.1016/j.vacuum.2022.111701
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, we report an experimental method to measure the density and distribution of a supersonic molecular beam used for charged particle beam profile monitoring. The density of the molecular beam used in this monitor was in the range of 10(14)-10(17) molecules/m(3). The vacuum performance of such a system using beam-induced fluorescence mode was discussed. The successful measurement of the molecular beam parameters paves the way for future applications in beam profile monitors for machines such as the LHC and proton therapy accelerators.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The application of a beam profile monitor as a beam current integrator for charged particle accelerators
    Chavez, E. R.
    Huerta, A.
    Macias, R.
    Barron-Palos, L.
    Andrade, E.
    Ortiz, M. E.
    Monroy, R.
    Moreno, E.
    Murillo, G.
    Policroniades, R.
    Varela, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 580 (03): : 1159 - 1163
  • [2] A non-invasive beam profile monitor for charged particle beams
    Tzoganis, Vasilis
    Welsch, Carsten P.
    APPLIED PHYSICS LETTERS, 2014, 104 (20)
  • [3] A gas curtain beam profile monitor using beam induced fluorescence for high intensity charged particle beams
    Salehilashkajani, A.
    Zhang, H. D.
    Ady, M.
    Chritin, N.
    Forck, P.
    Glutting, J.
    Jones, O. R.
    Kersevan, R.
    Kumar, N.
    Lefevre, T.
    Marriott-Dodington, T.
    Mazzoni, S.
    Papazoglou, I
    Rossi, A.
    Schneider, G.
    Sedlacek, O.
    Udrea, S.
    Veness, R.
    Welsch, C. P.
    APPLIED PHYSICS LETTERS, 2022, 120 (17)
  • [4] Pitot probe response for pulsed supersonic gas flow characterization in beam profile monitor
    Rosily, Sherry
    Dikshit, B.
    Krishnagopal, S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (02):
  • [5] Characterization of the Li beam probe with a beam profile monitor on JET
    Nedzelskiy, I. S.
    Korotkov, A.
    Brix, M.
    Morgan, P.
    Vince, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [6] CHARGED-PARTICLE BEAM PROFILE MEASUREMENTS
    AFRAMIAN, A
    ASKOURI, NA
    KHAN, HA
    NUCLEAR INSTRUMENTS & METHODS, 1974, 121 (03): : 421 - 424
  • [7] Analysis of charged particle induced reactions for beam monitor applications
    Babu, K. Surendra
    Lee, Young-Ouk
    Mukherjee, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2012, 283 : 46 - 54
  • [8] CHARACTERIZATION OF CHARGED-PARTICLE BEAM SOURCES
    FINK, JH
    SCHUMACHER, BW
    NUCLEAR INSTRUMENTS & METHODS, 1975, 130 (02): : 353 - 358
  • [9] Real-Time Beam Monitor for Charged Particle Medical Accelerators
    Leggieri, Alberto
    Passi, Davide
    di Paolo, Franco
    Ciccotelli, Alessia
    De Stefano, Silvia
    Marangoni, Filippo
    Felici, Giuseppe
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (02) : 869 - 877
  • [10] Hybrid SiC Pixel Detector for Charged-Particle Beam Monitor
    Kishishita, Tetsuichi
    Kosugi, Ryoji
    Fujita, Yowichi
    Fukao, Yoshinori
    Kojima, Kazutoshi
    Masumoto, Keiko
    Nishiguchi, Hajime
    Tanaka, Manobu M.
    Tanaka, Yasunori
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2023, 70 (06) : 1210 - 1214