Time Series Anomaly Detection with a Transformer Residual Autoencoder-Decoder

被引:0
|
作者
Wang, Shaojie [1 ]
Wang, Yinke [1 ]
Li, Wenzhong [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Time Series Analysis; Anomaly Detection; Transformer Autoencoder-Decoder;
D O I
10.1007/978-981-99-8070-3_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series anomaly detection is of great importance in a variety of domains such as finance fraud, industrial production, and information systems. However, due to the complexity and multiple periodicity of time series, extracting global and local information from different perspectives remains a challenge. In this paper, we propose a novel Transformer Residual Autoencoder-Decoder Model called TRAD for time series anomaly detection, which is based on a multi-interval sampling strategy incorporating with residual learning and stacked autoencoder-decoder to promote the ability to learn global and local information. Prediction error is applied to calculate anomaly scores using the proposed model from different scales, and the aggregated anomaly scores are utilized to infer outliers of the time series. Extensive experiments are conducted on five datasets and the results demonstrate that the proposed model outperforms the previous state-of-the-art baselines.
引用
收藏
页码:512 / 524
页数:13
相关论文
共 50 条
  • [21] Advancing Autoencoder Architectures for Enhanced Anomaly Detection inMultivariate Industrial Time Series
    Lee, Byeongcheon
    Kim, Sangmin
    Maqsood, Muazzam
    Moon, Jihoon
    Rho, Seungmin
    Computers, Materials and Continua, 2024, 81 (01): : 1275 - 1300
  • [22] Anomaly Detection using Variational Autoencoder with Spectrum Analysis for Time Series Data
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    2020 JOINT 9TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2020 4TH INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2020,
  • [23] Autoencoder-based Anomaly Detection for Time Series Data in Complex Systems
    Gong, Xundong
    Liao, Shibo
    Hu, Fei
    Hu, Xiaoqing
    Liu, Chunshan
    2022 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS, 2022, : 428 - 433
  • [24] Robust Unsupervised Anomaly Detection With Variational Autoencoder in Multivariate Time Series Data
    Yokkampon, Umaporn
    Mowshowitz, Abbe
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    IEEE ACCESS, 2022, 10 : 57835 - 57849
  • [25] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [26] Developing Novel Activation Functions in Time Series Anomaly Detection with LSTM Autoencoder
    Mercioni, Marina Adriana
    Holban, Stefan
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 73 - 78
  • [27] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [28] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] Anomaly Detection in Time Series Data Using Reversible Instance Normalized Anomaly Transformer
    Baidya, Ranjai
    Jeong, Heon
    SENSORS, 2023, 23 (22)
  • [30] Concept Drift Adaptation for Time Series Anomaly Detection via Transformer
    Ding, Chaoyue
    Zhao, Jing
    Sun, Shiliang
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 2081 - 2101