Some results of essential spectra of sum of two bounded linear operators in non-Archimedean Banach space

被引:1
|
作者
Ammar, Aymen [1 ]
Boutaf, Fatima Zohra [1 ]
Jeribi, Aref [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Soukra Rd Km 3-5, BP 1171, Sfax 3000, Tunisia
来源
关键词
Non-Archimedean (or p-adic) Banach spaces; P-adic Fredholm operator; Essential spectra of the sum of two bounded linear operators; PERTURBATIONS; INDEX;
D O I
10.1007/s40590-022-00485-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend some aspects of the essential spectra theory of linear operators acting in non-Archimedean (or p-adic) Banach spaces. In particular, we establish sufficient conditions for the relations between the essential spectra of the sum of two bounded linear operators and the union of their essential spectra. Moreover, we give essential prerequisites by studying the duality between p-adic upper and p-adic lower semi-Fredholm operators. We close this paper by giving some properties of the essential spectra.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Range inclusion of operators on non-archimedean Banach space
    WANG PengHui 1 & ZHANG Xu 2
    2 Key Laboratory of Systems and Control
    3 School of Mathematics
    Science China Mathematics, 2010, 53 (12) : 3215 - 3224
  • [12] Range inclusion of operators on non-archimedean Banach space
    PengHui Wang
    Xu Zhang
    Science China Mathematics, 2010, 53 : 3215 - 3224
  • [13] Some Results on Non-Archimedean Operators Theory
    Ettayb, Jawad
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (04): : 139 - 154
  • [14] Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces
    Attimu, Dodzi
    Diagana, Toka
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2009, 50 (01): : 37 - 60
  • [15] Pseudospectra in a Non-Archimedean Banach Space and Essential Pseudospectra in Eω
    Ammar, Aymen
    Bouchekoua, Ameni
    Jeribi, Aref
    FILOMAT, 2019, 33 (12) : 3961 - 3975
  • [16] C-GROUPS AND MIXED C-GROUPS OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES
    El Amrani, Abdelkhalek
    Blali, Aziz
    Ettayb, Jawad
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (01): : 185 - 201
  • [17] Bounded approximation properties in non-archimedean Banach spaces
    Perez-Garcia, C.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (10) : 1255 - 1263
  • [18] Spectral Theory of Linear Operators on Non-Archimedean Quasi-Banach Spaces
    Jawad Ettayb
    p-Adic Numbers, Ultrametric Analysis and Applications, 2024, 16 (4) : 351 - 374
  • [19] The condition ε-pseudospectra on non-Archimedean Banach space
    Ammar, Aymen
    Bouchekoua, Ameni
    Lazrag, Nawrez
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [20] Representation of bilinear forms in non-Archimedean Hilbert space by linear operators
    Diagana, Toka
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (04): : 695 - 705