Some results of essential spectra of sum of two bounded linear operators in non-Archimedean Banach space

被引:1
|
作者
Ammar, Aymen [1 ]
Boutaf, Fatima Zohra [1 ]
Jeribi, Aref [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Soukra Rd Km 3-5, BP 1171, Sfax 3000, Tunisia
来源
关键词
Non-Archimedean (or p-adic) Banach spaces; P-adic Fredholm operator; Essential spectra of the sum of two bounded linear operators; PERTURBATIONS; INDEX;
D O I
10.1007/s40590-022-00485-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend some aspects of the essential spectra theory of linear operators acting in non-Archimedean (or p-adic) Banach spaces. In particular, we establish sufficient conditions for the relations between the essential spectra of the sum of two bounded linear operators and the union of their essential spectra. Moreover, we give essential prerequisites by studying the duality between p-adic upper and p-adic lower semi-Fredholm operators. We close this paper by giving some properties of the essential spectra.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Some results of essential spectra of sum of two bounded linear operators in non-Archimedean Banach space
    Aymen Ammar
    Fatima Zohra Boutaf
    Aref Jeribi
    [J]. Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [2] Correction to: Some results of essential spectra of sum of two bounded linear operators in non-Archimedean Banach space
    Aymen Ammar
    Fatima Zohra Boutaf
    Aref Jeribi
    [J]. Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [3] Some results of essential spectra of sum of two bounded linear operators in non-Archimedean Banach space (vol 29, 18, 2022)
    Ammar, Aymen
    Boutaf, Fatima Zohra
    Jeribi, Aref
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (02):
  • [4] On Pencil of Bounded Linear Operators on Non-archimedean Banach Spaces
    El Amrani, A.
    Ettayb, J.
    Blali, A.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 13 - 13
  • [5] A NOTE ON PENCIL OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES
    Blali, Aziz
    EL Amrani, Abdelkhalek
    Ettayb, Jawad
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2022, 28 (02): : 105 - 109
  • [6] RING OF BOUNDED OPERATORS ON A NON-ARCHIMEDEAN NORMED LINEAR SPACE
    VANDERPU.M
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (03): : 260 - &
  • [7] A NOTE ON DISCRETE SEMIGROUPS OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES
    Blali, Aziz
    El Amrani, Abdelkhalek
    Ettayb, Jawad
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02): : 409 - 414
  • [8] Range inclusion of operators on non-archimedean Banach space
    Wang PengHui
    Zhang Xu
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3215 - 3224
  • [9] Sequence of Linear Operators in Non-Archimedean Banach Spaces
    Aymen Ammar
    Aref Jeribi
    Nawrez Lazrag
    [J]. Mediterranean Journal of Mathematics, 2019, 16
  • [10] Sequence of Linear Operators in Non-Archimedean Banach Spaces
    Ammar, Aymen
    Jeribi, Aref
    Lazrag, Nawrez
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)