Lithium-Ion Battery Thermal Parameter Identification and Core Temperature Estimation

被引:0
|
作者
Saqli, Khadija [1 ]
Bouchareb, Houda [1 ]
Oudghiri, Mohammed [1 ]
M'sirdi, Nacer Kouider [2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, LISAC, Fes, Morocco
[2] Aix Marseille Univ, LSIS, Marseille, France
来源
关键词
Li-ion battery thermal model; core temperature; surface temperature; kalman filter; recursive least squares; CHARGE ESTIMATION; MODEL; SIMULATION; DESIGN; STATE;
D O I
10.2339/politeknik.1161986
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Battery core and surface temperature are crucial for the thermal management and safety usage of Li-ion batteries. They affect the cell's physical properties and strongly correlate with some of its key states, such as the battery state of charge (SOC) and state of health (SOH). Therefore, an accurate estimate of the battery core and surface temperature will enhance the performance and prolong the battery's life. This study proposes an estimation system of the battery core and surface temperature. A simplified pseudo-two-dimensional model is introduced to capture the battery SOC, core and surface temperature that will be used later in this study to model and validate the results' accuracy. Then, a two-state thermal battery model (TSM) is presented and studied. The recursive least square (RLS) algorithm is adopted to identify the thermal parameters of the battery. Next, the TSM is validated using COMSOL Multiphysics simulation software and the thermal parameters are then fed to the Kalman filter (KF) to estimate the battery core temperature. Finally, the accuracy of the battery core temperature estimated results are validated with a root mean square error of 0.037K.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A New Cascaded Framework for Lithium-Ion Battery State and Parameter Estimation
    Meng, Jianwen
    Boukhnifer, Moussa
    Diallo, Demba
    Wang, Tianzhen
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [22] Online Parameter Estimation/Tracking for Lithium-ion Battery RC Model
    Cen, Zhaohui
    Kubiak, Pierre
    Belharouak, Ilias
    PROCEEDINGS OF 2016 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 16), 2016, : 936 - 940
  • [23] Core temperature estimation based on electro-thermal model of lithium-ion batteries
    Chen, Lunguo
    Hu, Minghui
    Cao, Kaibin
    Li, Shuxian
    Su, Zhong
    Jin, Guoqing
    Fu, Chunyun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (07) : 5320 - 5333
  • [24] Lithium-ion battery modeling and parameter identification based on fractional theory
    Hu, Minghui
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Qin, Datong
    Li, Zonghua
    ENERGY, 2018, 165 : 153 - 163
  • [25] Data pieces-based parameter identification for lithium-ion battery
    Gao, Wei
    Zou, Yuan
    Sun, Fengchun
    Hu, Xiaosong
    Yu, Yang
    Feng, Sen
    JOURNAL OF POWER SOURCES, 2016, 328 : 174 - 184
  • [26] Online Parameter Identification for Lithium-ion Cell in Battery Management System
    Wang, Tiansi
    Pei, Lei
    Lu, Rengui
    Zhu, Chunbo
    Wu, Guoliang
    2014 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2014,
  • [27] Parameter and Order Identification of Fractional Systems with Application to a Lithium-Ion Battery
    Stark, Oliver
    Pfeifer, Martin
    Hohmann, Soeren
    MATHEMATICS, 2021, 9 (14)
  • [28] Parameter optimization of an electrochemical and thermal model for a lithium-ion commercial battery
    Munoz, P. M.
    Humana, R. M.
    Falaguerra, T.
    Correa, G. aa
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [29] Optimal parameter identification strategy applied to lithium-ion battery model
    Ferahtia, Seydali
    Djeroui, Ali
    Rezk, Hegazy
    Chouder, Aissa
    Houari, Azeddine
    Machmoum, Mohamed
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16741 - 16753
  • [30] Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models
    Khosravi, Nima
    Dowlatabadi, Masrour
    Abdelghany, Muhammad Bakr
    Tostado-Veliz, Marcos
    Jurado, Francisco
    APPLIED ENERGY, 2024, 356