Lithium-Ion Battery Thermal Parameter Identification and Core Temperature Estimation

被引:0
|
作者
Saqli, Khadija [1 ]
Bouchareb, Houda [1 ]
Oudghiri, Mohammed [1 ]
M'sirdi, Nacer Kouider [2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, LISAC, Fes, Morocco
[2] Aix Marseille Univ, LSIS, Marseille, France
来源
关键词
Li-ion battery thermal model; core temperature; surface temperature; kalman filter; recursive least squares; CHARGE ESTIMATION; MODEL; SIMULATION; DESIGN; STATE;
D O I
10.2339/politeknik.1161986
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Battery core and surface temperature are crucial for the thermal management and safety usage of Li-ion batteries. They affect the cell's physical properties and strongly correlate with some of its key states, such as the battery state of charge (SOC) and state of health (SOH). Therefore, an accurate estimate of the battery core and surface temperature will enhance the performance and prolong the battery's life. This study proposes an estimation system of the battery core and surface temperature. A simplified pseudo-two-dimensional model is introduced to capture the battery SOC, core and surface temperature that will be used later in this study to model and validate the results' accuracy. Then, a two-state thermal battery model (TSM) is presented and studied. The recursive least square (RLS) algorithm is adopted to identify the thermal parameters of the battery. Next, the TSM is validated using COMSOL Multiphysics simulation software and the thermal parameters are then fed to the Kalman filter (KF) to estimate the battery core temperature. Finally, the accuracy of the battery core temperature estimated results are validated with a root mean square error of 0.037K.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A parameter identification and state of charge estimation method of lithium-ion battery considering temperature bias
    Hu, Zhaoming
    Ren, Guizhou
    Zhang, Jinxiu
    Si, Yuanquan
    Duan, Youpeng
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [2] Online Parameter Identification of the Lithium-Ion Battery with Refined Instrumental Variable Estimation
    Wen, An
    Meng, Jinhao
    Peng, Jichang
    Cai, Lei
    Xiao, Qian
    COMPLEXITY, 2020, 2020
  • [3] Equivalent Model and Parameter Identification of Lithium-Ion Battery
    Li, Rui
    Yu, Jialing
    Li, Jingnan
    Chen, Fuguang
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 29 - 39
  • [4] Electrochemical Model Parameter Identification of Lithium-Ion Battery with Temperature and Current Dependence
    Chen, Long
    Xu, Ruyu
    Rao, Weining
    Li, Huanhuan
    Wang, Ya-Ping
    Yang, Tao
    Jiang, Hao-Bin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4124 - 4143
  • [5] Fractional modeling and parameter identification of lithium-ion battery
    Jiang, Zeyu
    Li, Junhong
    Li, Lei
    Gu, Juping
    IONICS, 2022, 28 (09) : 4135 - 4148
  • [6] Fractional modeling and parameter identification of lithium-ion battery
    Zeyu Jiang
    Junhong Li
    Lei Li
    Juping Gu
    Ionics, 2022, 28 : 4135 - 4148
  • [7] Core temperature estimation of lithium-ion battery for EVs using Kalman filter
    Ma, Yan
    Cui, Yanfang
    Mou, Hongyuan
    Gao, Jinwu
    Chen, Hong
    APPLIED THERMAL ENGINEERING, 2020, 168
  • [8] Parametrization and Core Temperature Estimation of Lithium-Ion Batteries for Thermal Management
    Jeewandara, J. M. D. S.
    Karunadasa, J. P.
    Hemapala, K. T. M. U.
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [9] Parameter identification and SOC estimation of lithium ion battery
    Zhu, Hao
    Liu, Yun-Feng
    Zhao, Ce
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2014, 41 (03): : 37 - 42
  • [10] Status and Prospects of Research on Lithium-Ion Battery Parameter Identification
    Li, Jianlin
    Peng, Yuchen
    Wang, Qian
    Liu, Haitao
    BATTERIES-BASEL, 2024, 10 (06):