A Newton-type proximal gradient method for nonlinear multi-objective optimization problems

被引:6
|
作者
Ansary, Md Abu Talhamainuddin [1 ,2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Econ Sci, Kanpur, India
[2] Indian Inst Technol Kanpur, Dept Econ Sci, Kanpur 208016, India
来源
OPTIMIZATION METHODS & SOFTWARE | 2023年 / 38卷 / 03期
关键词
Convex optimization; nonsmooth optimization; multi-objective optimization; proximal gradient method; critical point; OBJECTIVE OPTIMIZATION; SUBGRADIENT METHOD; ALGORITHM;
D O I
10.1080/10556788.2022.2157000
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, a globally convergent Newton-type proximal gradient method is developed for composite multi-objective optimization problems where each objective function can be represented as the sum of a smooth function and a nonsmooth function. The proposed method deals with unconstrained convex multi-objective optimization problems. This method is free from any kind of priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a suitable descent direction. The subproblem uses a quadratic approximation of each smooth function. An Armijo type line search is conducted to find a suitable step length. A sequence is generated using the descent direction and the step length. The global convergence of this method is justified under some mild assumptions. The proposed method is verified and compared with some existing methods using a set of test problems.
引用
收藏
页码:570 / 590
页数:21
相关论文
共 50 条
  • [1] A NEWTON-TYPE GLOBALLY CONVERGENT INTERIOR-POINT METHOD TO SOLVE MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
    Jauny
    Ghosh, Debdas
    Upadhayay, Ashutosh
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (01) : 24 - 48
  • [2] A proximal Newton-type method for equilibrium problems
    Santos, P. J. S.
    Santos, P. S. M.
    Scheimberg, S.
    [J]. OPTIMIZATION LETTERS, 2018, 12 (05) : 997 - 1009
  • [3] A proximal Newton-type method for equilibrium problems
    P. J. S. Santos
    P. S. M. Santos
    S. Scheimberg
    [J]. Optimization Letters, 2018, 12 : 997 - 1009
  • [4] On Fractional Newton-Type Method for Nonlinear Problems
    Bayrak, Mine Aylin
    Demir, Ali
    Ozbilge, Ebru
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [5] The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems
    Wang, Hao
    Emmerich, Michael
    Deutz, Andre
    Adrian Sosa Hernandez, Victor
    Schutze, Oliver
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2023, 28 (01)
  • [6] Large Scale Optimization with Proximal Stochastic Newton-Type Gradient Descent
    Shi, Ziqiang
    Liu, Rujie
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT I, 2015, 9284 : 691 - 704
  • [7] A NONLINEAR SCALARIZATION METHOD FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
    Long, Qiang
    Jiang, Lin
    Li, Guoquan
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (01): : 39 - 65
  • [8] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Mordukhovich, Boris S.
    Yuan, Xiaoming
    Zeng, Shangzhi
    Zhang, Jin
    [J]. MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 899 - 936
  • [9] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Boris S. Mordukhovich
    Xiaoming Yuan
    Shangzhi Zeng
    Jin Zhang
    [J]. Mathematical Programming, 2023, 198 : 899 - 936
  • [10] A Gradient-Based Search Method for Multi-objective Optimization Problems
    Gao, Weifeng
    Wang, Yiming
    Liu, Lingling
    Huang, Lingling
    [J]. INFORMATION SCIENCES, 2021, 578 : 129 - 146