Prescription of finite Dirichlet eigenvalues and area on surface with boundary

被引:1
|
作者
He, Xiang [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirichlet eigenvalues; Prescription of eigenvalues; Stability of eigenvalues; ISOPERIMETRIC INEQUALITY; 1ST EIGENVALUE; MULTIPLICITY; LAPLACIAN; OPERATOR;
D O I
10.1016/j.geomphys.2024.105100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider Dirichlet Laplacian on compact surface. We show that for a fixed surface with boundary X, a finite increasing sequence of real numbers 0 < a1 < a2 < center dot center dot center dot < aN and a positive number A, there exists a metric g on X such that for any integer 1 < k < N, we have lambda Dk (X, g) = ak and Area(X, g) = A. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条