The IMSCal approach to determine collision cross section of multiply charged anions in traveling wave ion mobility spectrometry

被引:3
|
作者
Sergent, Isaure [1 ]
Adjieufack, Abel Idrice [1 ]
Gaudel-Siri, Anouk [1 ]
Siri, Didier [1 ]
Charles, Laurence [1 ,2 ]
机构
[1] Aix Marseille Univ, CNRS, Inst Chim Radicalaire, Marseille, France
[2] Marseille Univ, Inst Rad Chem, CNRS, UMR 7273, F-13397 Marseille 20, France
关键词
Traveling wave ion mobility spectrometry; Collision cross section; Polyanions; Calibration; MASS-SPECTROMETRY; PROTEIN; PEPTIDE; COMPLEXES;
D O I
10.1016/j.ijms.2023.117112
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The need for appropriate standards to calibrate ion arrival times in traveling wave ion mobility (TWIM) remains an issue for collision cross section (CCS) measurements, particularly in the case of multiply charged anions due to the scarcity of calibrants in the negative ion mode. In order to circumvent constraints raised for standards in the conventional power law calibration, the new approach recently implemented in the IMSCal software (Anal. Chem. 93 (2021) 3542-3550) has been evaluated here to derive CCS of multiply charged anions measured by TWIM. The mathematical model developed in IMSCal to describe ion motion in the TWIM cell was trained with different combinations of phosphoric acid clusters and deprotonated polyalanine standards and performance of so-obtained calibrations was evaluated for multiply deprotonated oligothymidine 10mers used as control analytes. Although optimal composition of the calibrant set could not be fully rationalized, one mandatory condition for best CCS accuracy is to include standards of different charge states to properly model the effects of radial distribution of ions in the TWIM cell. Further improvement of calibration robustness requires that one of these charge states equals that of the analytes to account for the effects of velocity relaxation also incorporated in the IMSCal model. Doing so, experimental CCS values could be readily obtained with relative error below & PLUSMN;5% for anions of charge state up to 6-.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Polymers for Traveling Wave Ion Mobility Spectrometry Calibration
    Duez, Quentin
    Chirot, Fabien
    Lienard, Romain
    Josse, Thomas
    Choi, ChangMin
    Coulembier, Olivier
    Dugourd, Philippe
    Cornil, Jerome
    Gerbaux, Pascal
    De Winter, Julien
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (11) : 2483 - 2491
  • [22] Traveling Wave Ion Mobility-Derived Collision Cross Section Database for Plant Specialized Metabolites: An Application to Ventilago harmandiana Pierre
    Jariyasopit, Narumol
    Limjiasahapong, Suphitcha
    Kurilung, Alongkorn
    Sartyoungkul, Sitanan
    Wisanpitayakorn, Pattipong
    Nuntasaen, Narong
    Kuhakarn, Chutima
    Reutrakul, Vichai
    Kittakoop, Prasat
    Sirivatanauksorn, Yongyut
    Khoomrung, Sakda
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (10) : 2481 - 2492
  • [23] Effects of Drift Gas on Collision Cross Sections of a Protein Standard in Linear Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry
    Jurneczko, Ewa
    Kalapothakis, Jason
    Campuzano, Iain D. G.
    Morris, Michael
    Barran, Perdita E.
    ANALYTICAL CHEMISTRY, 2012, 84 (20) : 8524 - 8531
  • [24] Application of Ion Mobility Spectrometry and the Derived Collision Cross Section in the Analysis of Environmental Organic Micropollutants
    Song, Xue-Chao
    Canellas, Elena
    Dreolin, Nicola
    Goshawk, Jeff
    Lv, Meilin
    Qu, Guangbo
    Nerin, Cristina
    Jiang, Guibin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (51) : 21485 - 21502
  • [25] AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry-mass spectrometry
    Lee, Joon-Yong
    Bilbao, Aivett
    Conant, Christopher R.
    Bloodsworth, Kent J.
    Orton, Daniel J.
    Zhou, Mowei
    Wilson, Jesse W.
    Zheng, Xueyun
    Webb, Ian K.
    Li, Ailin
    Hixson, Kim K.
    Fjeldsted, John C.
    Ibrahim, Yehia M.
    Payne, Samuel H.
    Jansson, Christer
    Smith, Richard D.
    Metz, Thomas O.
    BIOINFORMATICS, 2021, 37 (22) : 4193 - 4201
  • [26] Effective Temperature of Ions in Traveling Wave Ion Mobility Spectrometry
    Morsa, Denis
    Gabelica, Valerie
    De Pauw, Edwin
    ANALYTICAL CHEMISTRY, 2011, 83 (14) : 5775 - 5782
  • [27] Design and Application of a Traveling Wave Pulse Power Supply for Traveling Wave Ion Mobility Spectrometry
    Li, Hong
    Deng, Fu-Long
    Guo, Xing
    Lyu, Yan-Tong
    Yue, Han-Lu
    Wang, Ru-Xin
    Yang, Yan-Ting
    Zhao, Zhong-Jun
    Duan, Yi-Xiang
    Journal of Chinese Mass Spectrometry Society, 2022, 43 (05) : 679 - 686
  • [28] Considerations in experimental and theoretical collision cross-section measurements of small molecules using travelling wave ion mobility spectrometry-mass spectrometry
    Knapman, Tom W.
    Berryman, Joshua T.
    Campuzano, Iain
    Harris, Sarah A.
    Ashcroft, Alison E.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2010, 298 (1-3) : 17 - 23
  • [29] Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers
    Salbo, Rune
    Bush, Matthew F.
    Naver, Helle
    Campuzano, Iain
    Robinson, Carol V.
    Pettersson, Ingrid
    Jorgensen, Thomas J. D.
    Haselmann, Kim F.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2012, 26 (10) : 1181 - 1193
  • [30] An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements
    Stow, Sarah M.
    Causon, Tim J.
    Zheng, Xueyun
    Kurulugama, Ruwan T.
    Mairinger, Teresa
    May, Jody C.
    Rennie, Emma E.
    Baker, Erin S.
    Smith, Richard D.
    McLean, John A.
    Hann, Stephan
    Fjeldsted, John C.
    ANALYTICAL CHEMISTRY, 2017, 89 (17) : 9048 - 9055