Boosting Electrocatalytic Reduction of Nitrate to Ammonia over Co3O4 Nanosheets with Oxygen Vacancies

被引:5
|
作者
Wu, Xing [1 ]
Liu, Zhigong [1 ]
Gao, Tianyu [1 ]
Li, Zhizhuo [1 ]
Song, Zhenhui [1 ]
Tang, Jia [1 ]
Feng, Fan [1 ]
Qu, Caiyan [1 ]
Yao, Fubing [1 ,2 ,3 ]
Tang, Chongjian [1 ,2 ,3 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Chinese Natl Engn Res Ctr Control & Treatment Heav, Changsha 410083, Peoples R China
[3] State Key Lab Adv Met Nonferrous Met, Changsha 410083, Peoples R China
基金
中国博士后科学基金;
关键词
electrocatalysis; nitrate; ammonium; Co3O4; oxygen vacancies; WATER; EFFICIENT; EVOLUTION;
D O I
10.3390/met13040799
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrocatalytic nitrate reduction into ammonia is promising for its restricted activity and selectivity in wastewater treatment, however, it remains challenging. In this work, Co3O4 nanosheet electrodes with rich oxygen vacancies (OVs) (Co3O4-x/NF) are prepared and then applied as efficient catalysts for selective electrocatalytic reduction of nitrate to ammonia. The resulting Co3O4-x/NF electrodes exhibit high NO3--N removal efficiency and NH4+-N selectivity, at 93.7% and 85.4%, respectively. X-Ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectra (EPR) results clearly reveal the formation of OVs in Co3O4-x/NF. The electrochemical characterization results confirm that OVs can effectively improve electron transfer as well as the electrochemically active area. The Co2+/Co3+ ratio of Co3O4-x/NF increases after the electrocatalytic reduction of nitrate, highlighting the crucial role played by Co2+ in mediating ammonia production via the Co2+/Co3+ cycle. These findings offer valuable guidelines for the development of more efficient and sustainable approaches for nitrate-contaminated wastewater treatment and ammonia synthesis.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Electrocatalytic Activity of Co3O4/C for Oxygen Reduction and the Reaction Mechanism
    Li Shang
    Zhu Guangwen
    Qiu Peng
    Rong Gang
    Pan Mu
    CHINESE JOURNAL OF CATALYSIS, 2011, 32 (04) : 624 - 629
  • [22] Nanosheets Co3O4 Interleaved with Graphene for Highly Efficient Oxygen Reduction
    Odedairo, Taiwo
    Yan, Xuecheng
    Ma, Jun
    Jiao, Yalong
    Yao, Xiangdong
    Du, Aijun
    Zhu, Zhonghua
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (38) : 21373 - 21380
  • [23] Transforming Co3O4 nanosheets into porous N-doped CoxOy nanosheets with oxygen vacancies for the oxygen evolution reaction
    Xu, Lei
    Zou, Yuqin
    Xiao, Zhaohui
    Wang, Shuangyin
    JOURNAL OF ENERGY CHEMISTRY, 2019, 35 : 24 - 29
  • [24] Transforming Co3O4 nanosheets into porous N-doped CoxOy nanosheets with oxygen vacancies for the oxygen evolution reaction
    Lei Xu
    Yuqin Zou
    Zhaohui Xiao
    Shuangyin Wang
    Journal of Energy Chemistry , 2019, (08) : 24 - 29
  • [25] Morphology Effect of Co3O4 Nanooctahedron in Boosting Oxygen Reduction and Oxygen Evolution Reactions
    Chutia, Bhugendra
    Patowary, Suranjana
    Misra, Ashok
    Rao, Komateedi N.
    Bharali, Pankaj
    ENERGY & FUELS, 2022, 36 (22) : 13863 - 13872
  • [26] Pd-Doped Co3O4 Nanoarray for Efficient Eight-Electron Nitrate Electrocatalytic Reduction to Ammonia Synthesis
    Fan, Xiaoya
    Liu, Chaozhen
    Li, Zixiao
    Cai, Zhengwei
    Ouyang, Ling
    Li, Zerong
    He, Xun
    Luo, Yongsong
    Zheng, Dongdong
    Sun, Shengjun
    Wang, Yan
    Ying, Binwu
    Liu, Qian
    Farouk, Asmaa
    Hamdy, Mohamed S. S.
    Gong, Feng
    Sun, Xuping
    Zheng, Yinyuan
    SMALL, 2023, 19 (42)
  • [27] Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production
    Yan, Lina
    Cheng, Xing
    Wang, Yueshuai
    Wang, Zhaozhao
    Zheng, Lirong
    Yan, Yong
    Lu, Yue
    Sun, Shaorui
    Qiu, Wenge
    Chen, Ge
    MATERIALS TODAY ENERGY, 2022, 24
  • [28] Co-Ni bimetallic oxide with tuned surface oxygen vacancies efficiently electrocatalytic reduction of nitrate to ammonia
    Xu, Shouheng
    Qin, Meichun
    Qi, Jingqi
    Belfiore, Laurence A.
    Tang, Jianguo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 679 : 598 - 606
  • [29] Bi-doped Co3O4 nanosheets for nitrate to ammonia with near 100% faradaic efficiency
    He, Xiaoxia
    Wang, Ping
    Liao, Moyu
    Zeng, Xin
    Duan, Qiling
    Dai, Zhongxu
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (12) : 4901 - 4908
  • [30] Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction
    Xu, Lei
    Jiang, Qianqian
    Xiao, Zhaohui
    Li, Xingyue
    Huo, Jia
    Wang, Shuangyin
    Dai, Liming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (17) : 5277 - 5281