Real-Time Dense 3D Mapping of Underwater Environments

被引:4
|
作者
Wang, Weihan [1 ]
Joshi, Bharat [2 ]
Burgdorfer, Nathaniel [1 ]
Batsos, Konstantinos [3 ]
Li, Alberto Quattrini [4 ]
Mordohai, Philippos [1 ]
Rekleitis, Ioannis [2 ]
机构
[1] Stevens Inst Technol, Hoboken, NJ 07030 USA
[2] Univ South Carolina, Columbia, SC 29208 USA
[3] Latitude AI, Palo Alto, CA 94304 USA
[4] Dartmouth Coll, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
RECONSTRUCTION;
D O I
10.1109/ICRA48891.2023.10160266
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses real-time dense 3D reconstruction for a resource-constrained Autonomous Underwater Vehicle (AUV). Underwater vision-guided operations are among the most challenging as they combine 3D motion in the presence of external forces, limited visibility, and absence of global positioning. Obstacle avoidance and effective path planning require online dense reconstructions of the environment. Autonomous operation is central to environmental monitoring, marine archaeology, resource utilization, and underwater cave exploration. To address this problem, we propose to use SVIn2, a robust VIO method, together with a real-time 3D reconstruction pipeline. We provide extensive evaluation on four challenging underwater datasets. Our pipeline produces comparable reconstruction with that of COLMAP, the state-of-the-art offline 3D reconstruction method, at high frame rates on a single CPU.
引用
收藏
页码:5184 / 5191
页数:8
相关论文
共 50 条
  • [21] A design framework for interaction in 3D real-time learning environments
    Klett, F
    [J]. IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES, PROCEEDINGS, 2001, : 63 - 66
  • [22] Real-Time 3D Reconstruction for Collision Avoidance in Interventional Environments
    Ladikos, Alexander
    Benhimane, Selim
    Navab, Nassir
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 526 - 534
  • [23] Stereo SLAM for Robust Dense 3D Reconstruction of Underwater Environments
    Bonin-Font, Francisco
    Cosic, Aleksandar
    Negre, Pep Lluis
    Solbach, Markus
    Oliver, Gabriel
    [J]. OCEANS 2015 - GENOVA, 2015,
  • [24] Real-time Underwater 3D Reconstruction Method Based on Stereo Camera
    Hou, Jun
    Ye, Xiufen
    [J]. PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1204 - 1209
  • [25] Real-Time Updatable Globally Consistent 3D Grid Mapping
    Yi X.
    Yang S.
    Yang S.
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (01): : 43 - 50
  • [26] Real-Time UAV 3D Image Point Clouds Mapping
    Sun, Shangzhe
    Chen, Chi
    Wang, Zhiye
    Zhou, Jian
    Li, Liuchun
    Yang, Bisheng
    Cong, Yangzi
    Wang, Haoyu
    [J]. GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 1097 - 1104
  • [27] Efficient Exploration for Real-time Robot Indoor 3D Mapping
    Du Jianhao
    Liu Meiqin
    Sheng Weihua
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 6078 - 6083
  • [28] Real-Time 3D Mapping Aided GNSS on Android Devices
    Adjrad, Mounir
    Groves, Paul D.
    [J]. PROCEEDINGS OF THE 31ST INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2018), 2018, : 345 - 356
  • [29] Reliable Real-time Change Detection and Mapping for 3D LiDARs
    Wellhausen, Lorenz
    Dube, Renaud
    Gawel, Abel
    Siegwart, Roland
    Cadena, Cesar
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY AND RESCUE ROBOTICS (SSRR), 2017, : 81 - 87
  • [30] A volumetric sensor for real-time 3D mapping and robot navigation
    Fournier, Jonathan
    Ricard, Benoit
    Laurendeau, Denis
    [J]. UNMANNED SYSTEMS TECHNOLOGY VIII, PTS 1 AND 2, 2006, 6230