SR-CoMbEr: Heterogeneous Network Embedding Using Community Multi-view Enhanced Graph Convolutional Network for Automating Systematic Reviews

被引:1
|
作者
Lee, Eric W. [1 ]
Ho, Joyce C. [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
Systematic review; Network embedding; Heterogeneous information network; Multi-view learning; Graph convolution network; WORKLOAD;
D O I
10.1007/978-3-031-28244-7_35
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Systematic reviews (SRs) are a crucial component of evidence-based clinical practice. Unfortunately, SRs are labor-intensive and unscalable with the exponential growth in literature. Automating evidence synthesis using machine learning models has been proposed but solely focuses on the text and ignores additional features like citation information. Recent work demonstrated that citation embeddings can outperform the text itself, suggesting that better network representation may expedite SRs. Yet, how to utilize the rich information in heterogeneous information networks (HIN) for network embeddings is understudied. Existing HIN models fail to produce a high-quality embedding compared to simply running state-of-the-art homogeneous network models. To address existing HIN model limitations, we propose SR-CoMbEr, a community-based multi-view graph convolutional network for learning better embeddings for evidence synthesis. Our model automatically discovers article communities to learn robust embeddings that simultaneously encapsulate the rich semantics in HINs. We demonstrate the effectiveness of our model to automate 15 SRs.
引用
收藏
页码:553 / 568
页数:16
相关论文
共 50 条
  • [41] Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism
    Peng, Wei
    Wu, Rong
    Dai, Wei
    Yu, Ning
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [42] Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism
    Wei Peng
    Rong Wu
    Wei Dai
    Ning Yu
    BMC Bioinformatics, 24
  • [43] Multi-View and Multimodal Graph Convolutional Neural Network for Autism Spectrum Disorder Diagnosis
    Song, Tianming
    Ren, Zhe
    Zhang, Jian
    Wang, Mingzhi
    MATHEMATICS, 2024, 12 (11)
  • [44] Geometric localized graph convolutional network for multi-view semi-supervised classification
    Huang, Aiping
    Lu, Jielong
    Wu, Zhihao
    Chen, Zhaoliang
    Chen, Yuhong
    Wang, Shiping
    Zhang, Hehong
    INFORMATION SCIENCES, 2024, 677
  • [45] Using a Multi-view Convolutional Neural Network to monitor solar irradiance
    Huertas-Tato, Javier
    Galvan, Ines M.
    Aler, Ricardo
    Javier Rodriguez-Benitez, Francisco
    Pozo-Vazquez, David
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10295 - 10307
  • [46] Multi-View Gated Graph Convolutional Network for Aspect-Level Sentiment Classification
    Wu, Lijuan
    Zhang, Guixian
    Lei, Zhi
    Huang, Zhirong
    Lu, Guangquan
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2022), PT I, 2022, 13725 : 489 - 504
  • [47] Neighbor-aware deep multi-view clustering via graph convolutional network
    Du, Guowang
    Zhou, Lihua
    Li, Zhongxue
    Wang, Lizhen
    Lu, Kevin
    INFORMATION FUSION, 2023, 93 : 330 - 343
  • [48] A multi-view mask contrastive learning graph convolutional neural network for age estimation
    Zhang, Yiping
    Shou, Yuntao
    Meng, Tao
    Ai, Wei
    Li, Keqin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (11) : 7137 - 7162
  • [49] Generative Essential Graph Convolutional Network for Multi-View Semi-Supervised Classification
    Lu, Jielong
    Wu, Zhihao
    Zhong, Luying
    Chen, Zhaoliang
    Zhao, Hong
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7987 - 7999
  • [50] Using a Multi-view Convolutional Neural Network to monitor solar irradiance
    Javier Huertas-Tato
    Inés M. Galván
    Ricardo Aler
    Francisco Javier Rodríguez-Benítez
    David Pozo-Vázquez
    Neural Computing and Applications, 2022, 34 : 10295 - 10307