Cuspidal crosscaps and folded singularities on a maxface and a minface

被引:0
|
作者
Bardhan, Rivu [1 ]
Dhochak, Anu [1 ]
Kumar, Pradip [1 ]
机构
[1] Shiv Nadar Inst Eminence, Dept Math, Dadri 201314, Uttar Pradesh, India
来源
关键词
Mix-type zmc surface; Zero mean curvature; Maxface; Minface; MAXIMAL SURFACES; MINIMAL-SURFACES; CURVATURE;
D O I
10.1007/s13226-023-00414-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given zero mean curvature surface X (in the Lorentz Minkowski space) having folded singularity, we construct a family of maxface and minface, having increasing cuspidal crosscaps, 'converging' to X. We include a general discussion of this.
引用
收藏
页码:1142 / 1149
页数:8
相关论文
共 23 条
  • [11] Singularities of a geodesic flow on surfaces with a cuspidal edge
    A. O. Remizov
    Proceedings of the Steklov Institute of Mathematics, 2010, 268 : 248 - 257
  • [12] Duality between cuspidal butterflies and cuspidal S-1(-)-singularities on maximal surfaces
    Ogata, Yuta
    Teramoto, Keisuke
    NOTE DI MATEMATICA, 2018, 38 (01): : 115 - 130
  • [13] On Gaussian curvatures and singularities of Gauss maps of cuspidal edges
    Teramoto, Keisuke
    PORTUGALIAE MATHEMATICA, 2021, 78 (02) : 169 - 185
  • [14] On rational cuspidal plane curves, open surfaces and local singularities
    De Bobadilla, J. Fernandez
    Luengo, I.
    Melle-Hernandez, A.
    Nemethi, A.
    SINGULARITY THEORY, 2007, : 411 - +
  • [15] Singularities of Flat Dual Surfaces of Cuspidal Edges in the Three-Sphere from Duality Viewpoint
    Yu, Haibo
    Chen, Liang
    Wang, Yong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [16] From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation
    Burke, John
    Desroches, Mathieu
    Granados, Albert
    Kaper, Tasso J.
    Krupa, Martin
    Vo, Theodore
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (02) : 405 - 451
  • [17] From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation
    John Burke
    Mathieu Desroches
    Albert Granados
    Tasso J. Kaper
    Martin Krupa
    Theodore Vo
    Journal of Nonlinear Science, 2016, 26 : 405 - 451
  • [18] Wave arrival singularities at cuspidal points in the acoustic wave surfaces of anisotropic solids and their unfolding under weak spatial dispersion
    Every, A. G.
    Kaplunov, J. D.
    Pichugin, A. V.
    Rogerson, G. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2087): : 2983 - 3000
  • [19] Strong Symmetry Breaking in Coupled, Identical Lengyel-Epstein Oscillators via Folded Singularities
    Awal, Naziru M.
    Epstein, Irving R.
    Kaper, Tasso J.
    Vo, Theodore
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (03)
  • [20] Inflection, Canards and Folded Singularities in Excitable Systems: Application to a 3D FitzHugh–Nagumo Model
    J. Uria Albizuri
    M. Desroches
    M. Krupa
    S. Rodrigues
    Journal of Nonlinear Science, 2020, 30 : 3265 - 3291