A Meta-Learning Approach for Few-Shot Face Forgery Segmentation and Classification

被引:2
|
作者
Lin, Yih-Kai [1 ]
Yen, Ting-Yu [1 ]
机构
[1] Natl Pingtung Univ, Dept Comp Sci & Artificial Intelligence, 4-18 Minsheng Rd, Pingtung City 90003, Taiwan
关键词
digital forensics; face forgery detection; U-Net; segmentation; meta-learning; few-shot learning;
D O I
10.3390/s23073647
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The technology for detecting forged images is good at detecting known forgery methods. It trains neural networks using many original and corresponding forged images created with known methods. However, when encountering unseen forgery methods, the technology performs poorly. Recently, one suggested approach to tackle this problem is to use a hand-crafted generator of forged images to create a range of fake images, which can then be used to train the neural network. However, the aforementioned method has limited detection performance when encountering unseen forging techniques that the hand-craft generator has not accounted for. To overcome the limitations of existing methods, in this paper, we adopt a meta-learning approach to develop a highly adaptive detector for identifying new forging techniques. The proposed method trains a forged image detector using meta-learning techniques, making it possible to fine-tune the detector with only a few new forged samples. The proposed method inputs a small number of the forged images to the detector and enables the detector to adjust its weights based on the statistical features of the input forged images, allowing the detection of forged images with similar characteristics. The proposed method achieves significant improvement in detecting forgery methods, with IoU improvements ranging from 35.4% to 127.2% and AUC improvements ranging from 2.0% to 48.9%, depending on the forgery method. These results show that the proposed method significantly improves detection performance with only a small number of samples and demonstrates better performance compared to current state-of-the-art methods in most scenarios.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] MGML: Momentum group meta-learning for few-shot image classification
    Zhu, Xiaomeng
    Li, Shuxiao
    NEUROCOMPUTING, 2022, 514 : 351 - 361
  • [32] Survey of Few-Shot Image Classification Based on Deep Meta-Learning
    Zhou, Bojun
    Chen, Zhiyu
    Computer Engineering and Applications, 2024, 60 (08) : 1 - 15
  • [33] Meta-Learning for Few-Shot NMT Adaptation
    Sharaf, Amr
    Hassan, Hany
    Daume, Hal, III
    NEURAL GENERATION AND TRANSLATION, 2020, : 43 - 53
  • [34] Few-shot classification via efficient meta-learning with hybrid optimization
    Jia, Jinfang
    Feng, Xiang
    Yu, Huiqun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [35] Few-Shot One-Class Classification via Meta-Learning
    Frikha, Ahmed
    Krompass, Denis
    Koepken, Hans-Georg
    Tresp, Volker
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7448 - 7456
  • [36] Structure-enhanced meta-learning for few-shot graph classification
    Jiang, Shunyu
    Feng, Fuli
    Chen, Weijian
    Li, Xiang
    He, Xiangnan
    AI OPEN, 2021, 2 : 160 - 167
  • [37] Meta-learning triplet contrast network for few-shot text classification
    Dong, Kaifang
    Jiang, Baoxing
    Li, Hongye
    Zhu, Zhenfang
    Liu, Peiyu
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [38] IMPROVING GENERALIZATION FOR FEW-SHOT REMOTE SENSING CLASSIFICATION WITH META-LEARNING
    Sharma, Surbhi
    Roscher, Ribana
    Riedel, Morris
    Memon, Shahbaz
    Cavallaro, Gabriele
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5061 - 5064
  • [39] Few-shot Node Classification on Attributed Networks with Graph Meta-learning
    Liu, Yonghao
    Li, Mengyu
    Li, Ximing
    Giunchiglia, Fausto
    Feng, Xiaoyue
    Guan, Renchu
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 471 - 481
  • [40] MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification
    Lu, Liangfu
    Cui, Xudong
    Tan, Zhiyuan
    Wu, Yulei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 725 - 736