Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production

被引:43
|
作者
Yu, Zhipeng [1 ,2 ]
Liu, Lifeng [1 ,2 ]
机构
[1] Songshan Lake Mat Lab, Frontier Res Ctr, Dongguan 523808, Peoples R China
[2] Int Iberian Nanotechnol Lab INL, Clean Energy Cluster, Ave Mestre Jose Veiga, P-4715330 Braga, Portugal
关键词
anodic oxidation reaction; energy-saving hydrogen production; hybrid electrolysis; redox mediator; seawater electrolysis; FUEL-CELLS; OXYGEN EVOLUTION; WATER; ENERGY; ELECTROCATALYSTS; GENERATION; UREA; CHALLENGES; OPPORTUNITIES; ELECTRODES;
D O I
10.1002/adma.202308647
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined. Hybrid seawater electrolysis, enabled by the anodic oxidation reaction of small molecules or redox mediators substituting for the energy-demanding oxygen evolution reaction, holds substantial promise for energy-saving and cost-effective hydrogen production from seawater without the notorious interfering chlorine evolution, and meanwhile enables either co-production of value-added chemicals or environmental remediation.image
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Sustainable Hydrogen Production from Seawater Electrolysis: Through Fundamental Electrochemical Principles to the Most Recent Development
    Badea, Gabriela Elena
    Hora, Cristina
    Maior, Ioana
    Cojocaru, Anca
    Secui, Calin
    Filip, Sanda Monica
    Dan, Florin Ciprian
    ENERGIES, 2022, 15 (22)
  • [32] Harvesting energy from marine: Seawater electrolysis for hydrogen production
    Zhang, Weibo
    Wei, Yicui
    Li, Jingde
    Xiao, He
    FUEL, 2024, 377
  • [33] Seawater electrolysis for hydrogen production: Technological advancements and future perspectives
    Mishra, Arti
    Park, Hyunwoong
    El-Mellouhi, Fedwa
    Han, Dong Suk
    FUEL, 2024, 361
  • [34] Seawater Treatment Technologies for Hydrogen Production by Electrolysis-A Review
    Mika, Lukasz
    Sztekler, Karol
    Bujok, Tomasz
    Boruta, Piotr
    Radomska, Ewelina
    ENERGIES, 2024, 17 (24)
  • [35] Chlorine-free alkaline seawater electrolysis for hydrogen production'
    Amikam, Gidon
    Natiu, Paz
    Gendel, Youri
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (13) : 6504 - 6514
  • [36] Seawater electrolysis technologies for green hydrogen production: challenges and opportunities
    Gao, Fei-Yue
    Yu, Peng-Cheng
    Gao, Min-Rui
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 36
  • [37] Green hydrogen from seawater electrolysis: Recent developments and future perspectives
    Bamba, Jaira Neibel
    Dumlao, Alicia Theresse
    Lazaro, Rosela Mae
    Matienzo, D. J. Donn
    Ocon, Joey
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 48
  • [38] Recent progress in seawater electrolysis for hydrogen evolution by transition metal phosphides
    Feng, Suyang
    Yu, Yanhui
    Li, Jing
    Luo, Junming
    Deng, Peilin
    Jia, Chunman
    Shen, Yijun
    Tian, Xinlong
    CATALYSIS COMMUNICATIONS, 2022, 162
  • [39] Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives
    Khalafallah, Diab
    Zhang, Yunxiang
    Wang, Hao
    Lee, Jong-Min
    Zhang, Qinfang
    CHINESE JOURNAL OF CATALYSIS, 2023, 55 : 44 - 115
  • [40] Advances in hydrogen production from electrocatalytic seawater splitting
    Wang, Cheng
    Shang, Hongyuan
    Jin, Liujun
    Xu, Hui
    Du, Yukou
    NANOSCALE, 2021, 13 (17) : 7897 - 7912