Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Al0.6CoCrFeNi High-Entropy Alloy

被引:0
|
作者
Hou, Pengyu [1 ]
Yang, Yue [1 ]
Zhang, Leilei [1 ]
Meng, Yi [1 ]
Cui, Yan [1 ]
Cao, Leigang [1 ]
机构
[1] North China Univ Technol, Dept Mat Sci & Engn, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
high-entropy alloy; phase transition; strengthening; microstructure; mechanical property; PRECIPITATION; STABILITY; DUCTILITY; BEHAVIOR;
D O I
10.3390/ma16227161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of heat treatment on the microstructure and tensile properties of an as-cast Al0.6CoCrFeNi high-entropy alloy (HEA) was investigated in this paper. The results show that the as-cast Al0.6CoCrFeNi HEA presents a typical FCC dendrite morphology with the interdendritic region consisting of BCC/B2 structure and heat treatment can strongly affect the microstructure and mechanical properties of HEA. Microstructure analysis revealed the precipitation of a nano-sized L1(2) phase in the FCC dendrite and the formation of the FCC and sigma phases in the interdendritic region after annealing at 700 degrees C. The coarse B2 phase was directly precipitated from the FCC dendrite in the 900 degrees C-annealed sample, with the coexistence of the B2, FCC, and sigma phases in the interdendritic region. Then, the interdendritic region converted to a B2 and FCC dual-phase structure caused by the re-decomposition of the sigma phase after annealing at 1100 degrees C. The tensile test results show that the 700 degrees C-annealed HEA presents the most significant strengthening effect, with increments of corresponding yield strength being about 107%, which can be attributed to the numerous nano-sized L1(2) precipitates in the FCC dendrite. The mechanical properties of 1100 degrees C-annealed alloy revert to a level close to that of the as-cast alloy, which can be attributed to the coarsening mechanism of B2 precipitates and the formation of a soft FCC phase in the interdendritic region. The observed variation in mechanical properties during heat treatment follows the traditional trade-off relationship between strength and plasticity.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy
    Huang TianDang
    Jiang Li
    Zhang ChangLiang
    Jiang Hui
    Lu YiPing
    Li TingJu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (01) : 117 - 123
  • [42] Effect of heat treatment time on the microstructure and properties of FeCoNiCuTi high-entropy alloy
    Qu, Huaizhi
    Gong, Minglong
    Zhang, Dongdong
    Sun, Wenda
    Liu, Fengfang
    Jing, Bai
    Gao, Qiuzhi
    Xiang, Zhao
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 4510 - 4516
  • [43] Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy
    TianDang Huang
    Li Jiang
    ChangLiang Zhang
    Hui Jiang
    YiPing Lu
    TingJu Li
    Science China Technological Sciences, 2018, 61 : 117 - 123
  • [44] Effect of high-temperature heat treatment on microstructure and mechanical properties of Al x CoCrFeNi (0. 5≤x≤0.8) high-entropy alloys
    Cao, Leigang
    Wang, Fan
    Hou, Pengyu
    Yang, Yue
    Cui, Yan
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (01): : 249 - 258
  • [45] Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy
    Lin, Chun-Ming
    Tsai, Hsien-Lung
    INTERMETALLICS, 2011, 19 (03) : 288 - 294
  • [46] Macrostructure, Microstructure, and Mechanical Properties of Al0.2CoCrFeNi High-Entropy Alloy Produced by Vacuum Induction Melting
    Dudala, Srinivas
    Krishna, S. Chenna
    Korla, Rajesh
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2024, 77 (06) : 1489 - 1497
  • [47] Microstructure, mechanical and tribological properties of CoCrFeNi high-entropy alloy fabricated by different preparing processes
    Li, Wen-jing
    An, Jin-hua
    Zhang, Li
    Tu, Jian
    Wang, Lin-zhi
    Zheng, Shu-kun
    Zhou, Zhi-ming
    MATERIALS LETTERS, 2023, 335
  • [48] Effect of Mo content on microstructure and mechanical properties of CoCrFeNi Series high-entropy alloys
    Han, Chunxia
    Zhang, Yun
    Liu, Jingshun
    Li, Ze
    Wu, Yanan
    Cui, Yaqiang
    Wang, Feng
    Liu, Zetian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 8209 - 8217
  • [49] Effect of heat treatment on microstructure and properties of Al0.5CoCrFeNi high entropy alloy fabricated by selective laser melting
    Du, Yuhui
    Guo, Chunhuan
    Jiang, Fengchun
    Li, Yanchun
    Sun, Xiaojing
    Sun, Qianfei
    Zhang, Hexin
    Dong, Tao
    Konovalov, Sergey
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 882
  • [50] An investigation on the microstructure and mechanical properties of Al0.3CoCrFeNi high entropy alloy with a heterogeneous microstructure
    Zhao, Yanni
    Chen, Zhongwei
    Yan, Kang
    Naseem, Sufyan
    Le, Wei
    Zhang, Haolan
    Lu, Wenjuan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 838