Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Al0.6CoCrFeNi High-Entropy Alloy

被引:0
|
作者
Hou, Pengyu [1 ]
Yang, Yue [1 ]
Zhang, Leilei [1 ]
Meng, Yi [1 ]
Cui, Yan [1 ]
Cao, Leigang [1 ]
机构
[1] North China Univ Technol, Dept Mat Sci & Engn, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
high-entropy alloy; phase transition; strengthening; microstructure; mechanical property; PRECIPITATION; STABILITY; DUCTILITY; BEHAVIOR;
D O I
10.3390/ma16227161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of heat treatment on the microstructure and tensile properties of an as-cast Al0.6CoCrFeNi high-entropy alloy (HEA) was investigated in this paper. The results show that the as-cast Al0.6CoCrFeNi HEA presents a typical FCC dendrite morphology with the interdendritic region consisting of BCC/B2 structure and heat treatment can strongly affect the microstructure and mechanical properties of HEA. Microstructure analysis revealed the precipitation of a nano-sized L1(2) phase in the FCC dendrite and the formation of the FCC and sigma phases in the interdendritic region after annealing at 700 degrees C. The coarse B2 phase was directly precipitated from the FCC dendrite in the 900 degrees C-annealed sample, with the coexistence of the B2, FCC, and sigma phases in the interdendritic region. Then, the interdendritic region converted to a B2 and FCC dual-phase structure caused by the re-decomposition of the sigma phase after annealing at 1100 degrees C. The tensile test results show that the 700 degrees C-annealed HEA presents the most significant strengthening effect, with increments of corresponding yield strength being about 107%, which can be attributed to the numerous nano-sized L1(2) precipitates in the FCC dendrite. The mechanical properties of 1100 degrees C-annealed alloy revert to a level close to that of the as-cast alloy, which can be attributed to the coarsening mechanism of B2 precipitates and the formation of a soft FCC phase in the interdendritic region. The observed variation in mechanical properties during heat treatment follows the traditional trade-off relationship between strength and plasticity.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Abundant polymorphic transitions in the Al0.6CoCrFeNi high-entropy alloy
    Wang, L.
    Zhang, F.
    Nie, Z.
    Wang, L.
    Wang, F.
    Wang, B.
    Zhou, S.
    Xue, Y.
    Cheng, B.
    Lou, H.
    Chen, X.
    Ren, Y.
    Brown, D. E.
    Prakapenka, V.
    Greenberg, E.
    Zeng, Z.
    Zeng, Q. S.
    MATERIALS TODAY PHYSICS, 2019, 8 : 1 - 9
  • [2] Formation mechanism of interdiffusion layer and mechanical properties of Al0.6CoCrFeNi high-entropy alloy/Ti composites
    Qiang, Fei
    Xin, Shewei
    Guo, Ping
    Hou, Hongmiao
    Wang, Jia
    Hou, Wentao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 943
  • [3] Optimize the Mechanical Properties of Al0.6CoCrFeNi High-Entropy Alloys by Thermo-Mechanical Processing
    Yang, Huijun
    Tan, Yaqin
    Qiao, Junwei
    Hawk, Jeffrey A.
    Zhang, Yong
    Gao, Michael
    Liaw, Peter K.
    METALS, 2022, 12 (02)
  • [4] The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature
    Chen, Ming
    Lan, Liwei
    Shi, Xiaohui
    Yang, Huijun
    Zhang, Min
    Qiao, Junwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 : 180 - 189
  • [5] Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments
    Chen, Ming
    Shi, Xiao Hui
    Yang, Huijun
    Liaw, Peter K.
    Gao, Michael C.
    Hawk, Jeffrey A.
    Qiao, Junwei
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3310 - 3320
  • [6] Microstructural evolution and local mechanical properties of dendrites in Al0.6CoCrFeNi high entropy alloy
    Shang, Genfeng
    Zheng, Weisen
    Wang, Jingjing
    Lu, Xiao-Gang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 846
  • [7] Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments
    Ming Chen
    Xiao Hui Shi
    Huijun Yang
    Peter K. Liaw
    Michael C. Gao
    Jeffrey A. Hawk
    Junwei Qiao
    Journal of Materials Research, 2018, 33 : 3310 - 3320
  • [8] Cutting Behavior of Al0.6CoCrFeNi High Entropy Alloy
    Constantin, George
    Balan, Emilia
    Voiculescu, Ionelia
    Geanta, Victor
    Craciun, Valentin
    MATERIALS, 2020, 13 (18)
  • [9] Constitutive equation and microstructure analysis of Al0.6CoCrFeNi high entropy alloy during hot deformation
    Wang, Jingyi
    Yang, Pan
    Wang, Dan
    PHILOSOPHICAL MAGAZINE, 2022, 102 (17) : 1684 - 1707
  • [10] Macro-micro analysis of mechanical properties of Al0.6CoCrFeNi high-entropy alloy particle-reinforced Al-based composites
    Yuan, Zhanwei
    Ma, Zhe
    Zhang, Hao
    Wang, Kai
    Yu, Yuan
    Li, Shurong
    Zhang, Xuemin
    Wang, Jingyi
    Zhang, Danli
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 885