Strong edge-coloring of 2-degenerate graphs

被引:1
|
作者
Yu, Gexin [1 ]
Yu, Rachel [2 ]
机构
[1] William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Jamestown High Sch, Williamsburg, VA 23185 USA
关键词
Strong edge-coloring; 2-Degenerate graph; STRONG CHROMATIC INDEX;
D O I
10.1016/j.dam.2023.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A strong edge-coloring of a graph G is an edge-coloring in which every color class is an induced matching, and the strong chromatic index chi(s)' (G) is the minimum number of colors needed in strong edge-colorings of G. A graph is 2-degenerate if every subgraph has minimum degree at most 2. Choi, Kim, Kostochka, and Raspaud (2016) showed chi(s)'(G) <= 5 Delta + 1 if G is a 2-degenerate graph with maximum degree Delta. In this article, we improve it to chi(s)'(G) <= 5 Delta - Delta(1/2-is an element of) + 2 when Delta >= 4(1/(2 is an element of)) for any 0 < is an element of <= 1/2. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 50 条
  • [21] Optimal strong parity edge-coloring of complete graphs
    David P. Bunde
    Kevin Milans
    Douglas B. West
    Hehui Wu
    Combinatorica, 2008, 28 : 625 - 632
  • [22] On (s, t)-relaxed strong edge-coloring of graphs
    He, Dan
    Lin, Wensong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 609 - 625
  • [23] The Relaxed Edge-Coloring Game and k-Degenerate Graphs
    Charles Dunn
    David Morawski
    Jennifer Firkins Nordstrom
    Order, 2015, 32 : 347 - 361
  • [24] Strong Edge-Coloring of Pseudo-Halin Graphs
    Xiangwen Li
    Jian-Bo Lv
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 893 - 910
  • [25] Strong Chromatic Index of 2-Degenerate Graphs
    Chang, Gerard Jennhwa
    Narayanan, N.
    JOURNAL OF GRAPH THEORY, 2013, 73 (02) : 119 - 126
  • [26] On Strong Edge-Coloring of Claw-Free Subcubic Graphs
    Jian-Bo Lv
    Jianxi Li
    Xiaoxia Zhang
    Graphs and Combinatorics, 2022, 38
  • [27] Neighbor sum distinguishing total coloring of 2-degenerate graphs
    Jingjing Yao
    Xiaowei Yu
    Guanghui Wang
    Changqing Xu
    Journal of Combinatorial Optimization, 2017, 34 : 64 - 70
  • [28] ON EDGE-COLORING INDIFFERENCE GRAPHS
    DEFIGUEIREDO, CMH
    MEIDANIS, J
    DEMELLO, CP
    LATIN '95: THEORETICAL INFORMATICS, 1995, 911 : 286 - 299
  • [29] Edge-coloring bipartite graphs
    Kapoor, A
    Rizzi, R
    JOURNAL OF ALGORITHMS, 2000, 34 (02) : 390 - 396
  • [30] List strong edge-coloring of graphs with maximum degree 4
    Zhang, Baochen
    Chang, Yulin
    Hu, Jie
    Ma, Meijie
    Yang, Donglei
    DISCRETE MATHEMATICS, 2020, 343 (06)