A strong edge-coloring of a graph G is an edge-coloring in which every color class is an induced matching, and the strong chromatic index chi(s)' (G) is the minimum number of colors needed in strong edge-colorings of G. A graph is 2-degenerate if every subgraph has minimum degree at most 2. Choi, Kim, Kostochka, and Raspaud (2016) showed chi(s)'(G) <= 5 Delta + 1 if G is a 2-degenerate graph with maximum degree Delta. In this article, we improve it to chi(s)'(G) <= 5 Delta - Delta(1/2-is an element of) + 2 when Delta >= 4(1/(2 is an element of)) for any 0 < is an element of <= 1/2. (c) 2023 Elsevier B.V. All rights reserved.
机构:
Safarik Univ, Fac Sci, Inst Math, Kosice, SlovakiaSafarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
Hudak, David
Luzar, Borut
论文数: 0引用数: 0
h-index: 0
机构:
Fac Informat Studies, Novo Mesto 8000, Slovenia
Inst Math Phys & Mech, Ljubljana 1000, SloveniaSafarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
Luzar, Borut
Sotak, Roman
论文数: 0引用数: 0
h-index: 0
机构:
Safarik Univ, Fac Sci, Inst Math, Kosice, SlovakiaSafarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
Sotak, Roman
Skrekovski, Riste
论文数: 0引用数: 0
h-index: 0
机构:
Fac Informat Studies, Novo Mesto 8000, Slovenia
Inst Math Phys & Mech, Ljubljana 1000, Slovenia
Univ Primorska, FAMNIT, Koper 6000, SloveniaSafarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
机构:
Univ Paris 11, CNRS, LRI, F-91405 Orsay, FranceAlfred Renyi Inst Math, Budapest, Hungary
Cohen, Nathann
Fujita, Shinya
论文数: 0引用数: 0
h-index: 0
机构:
Yokohama City Univ, Int Coll Arts & Sci, Yokohama, Kanagawa 2360027, JapanAlfred Renyi Inst Math, Budapest, Hungary
Fujita, Shinya
Narayanan, Narayanan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
Univ Paris 11, CNRS, LRI, F-91405 Orsay, France
Indian Inst Technol, Madras 600036, Tamil Nadu, IndiaAlfred Renyi Inst Math, Budapest, Hungary
Narayanan, Narayanan
Naserasr, Reza
论文数: 0引用数: 0
h-index: 0
机构:Alfred Renyi Inst Math, Budapest, Hungary
Naserasr, Reza
Valicov, Petru
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10617, Taiwan
Aix Marseille Univ, CNRS, LIF UMR 7279, F-13288 Marseille, FranceAlfred Renyi Inst Math, Budapest, Hungary
Valicov, Petru
ELECTRONIC JOURNAL OF COMBINATORICS,
2015,
22
(02):