Powerful Synergy of Traditional Chinese Medicine and Aggregation-Induced Emission-Active Photosensitizer in Photodynamic Therapy

被引:8
|
作者
Sun, Feiyi [1 ]
Shen, Hanchen [1 ]
Liu, Qingqing [2 ]
Chen, Yuyang [1 ]
Guo, Weihua [3 ]
Du, Wutong [1 ]
Xu, Changhuo [4 ]
Wang, Bingzhe [5 ]
Xing, Guichuan [5 ]
Jin, Zhuwei [1 ]
Lam, Jacky W. Y. [1 ]
Sun, Jianwei [1 ]
Ye, Ruquan [3 ]
Kwok, Ryan T. K. [1 ]
Chen, Jianping [2 ]
Tang, Ben Zhong [1 ,6 ]
机构
[1] Hong Kong Univ Sci & Technol, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Dept Chem, State Key Lab Mol Neurosci,Hong Kong Branch, Hong Kong 999077, Peoples R China
[2] Univ Hong Kong, Li Ka Shing Fac Med, Sch Chinese Med, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Hong Kong 999077, Peoples R China
[4] Univ Macau, Fac Hlth Sci, MOE Frontiers Sci Ctr Precis Oncol, Macau 999078, Peoples R China
[5] Univ Macau, Inst Appl Phys & Mat Engn, Macau 999078, Peoples R China
[6] Chinese Univ Hong Kong, Shenzhen Inst Aggregate Sci & Technol, Sch Sci & Engn, Shenzhen 518172, Peoples R China
关键词
aggregation-induced emission; traditional Chinese medicine; isoliquiritigenin; photodynamic therapy; Fo''rsterresonance energy transfer; BREAST-CANCER; ISOLIQUIRITIGENIN; RESISTANCE;
D O I
10.1021/acsnano.3c04342
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Breast cancer (BC) remains a significant global health challenge for women despite advancements in early detection and treatment. Isoliquiritigenin (ISL), a compound derived from traditional Chinese medicine, has shown potential as an anti-BC therapy, but its low bioavailability and poor water solubility restrict its effectiveness. In this study, we created theranostic nanoparticles consisting of ISL and a near-infrared (NIR) photosensitizer, TBPI, which displays aggregation-induced emission (AIE), with the goal of providing combined chemo- and photodynamic therapies (PDT) for BC. Initially, we designed an asymmetric organic molecule, TBPI, featuring a rotorlike triphenylamine as the donor and 1-methylpyridinium iodide as the acceptor, which led to the production of reactive oxygen species in mitochondria. We then combined TBPI with ISL and encapsulated them in DSPE-PEG-RGD nanoparticles to produce IT-PEG-RGD nanoparticles, which showed high affinity for BC, better intersystem crossing (ISC) efficiency, and Fo''rster resonance energy transfer (FRET) between TBPI and ISL. In both 4T1 BC cell line and a 4T1 tumor-bearing BC mouse model, the IT-PEG-RGD nanoparticles demonstrated excellent drug delivery, synergistic antitumor effects, enhanced tumor-killing efficacy, and reduced drug dosage and side effects. Furthermore, we exploited the optical properties of TBPI with ISL to reveal the release process and distribution of nanoparticles in cells. This study provides a valuable basis for further exploration of IT-PEG-RGD nanoparticles and their anticancer mechanisms, highlighting the potential of theranostic nanoparticles in BC treatment.
引用
收藏
页码:18952 / 18964
页数:13
相关论文
共 50 条
  • [21] Fluorometric Sensing of Biogenic Amines with Aggregation-Induced Emission-Active Tetraphenylethenes
    Nakamura, Mitsutaka
    Sanji, Takanobu
    Tanaka, Masato
    CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (19) : 5344 - 5349
  • [22] Specific discrimination and efficient elimination of gram-positive bacteria by an aggregation-induced emission-active ruthenium (II) photosensitizer
    Liu, Mengling
    Song, Wenzhu
    Deng, Peipei
    Nong, Shuli
    Zhang, Xianpeng
    Yu, Yue
    Li, Guanying
    Xu, Li
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2023, 251
  • [23] Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics
    Gu, Bobo
    Wu, Wenbo
    Xu, Gaixia
    Feng, Guangxue
    Yin, Feng
    Chong, Peter Han Joo
    Qu, Junle
    Yong, Ken-Tye
    Liu, Bin
    ADVANCED MATERIALS, 2017, 29 (28)
  • [24] Aggregation-Induced Emission Photosensitizer-Engineered Anticancer Nanomedicine for Synergistic Chemo/Chemodynamic/Photodynamic Therapy
    Yu, Bentong
    Liu, Mingshan
    Jiang, Lei
    Xu, Chuan
    Hu, Huoli
    Huang, Tong
    Xu, Dunwu
    Wang, Ning
    Li, Qianying
    Tang, Ben Zhong
    Huang, Xiaolin
    Zhang, Wan
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (11)
  • [25] An aggregation-induced emission photosensitizer with efficient singlet oxygen generation capacity for mitochondria targeted photodynamic therapy
    Wang, Xiaohan
    Xue, Ke
    Wang, Xing
    Zhao, Yongfei
    Deng, Jing
    Yang, Li
    Liang, Jiankang
    Li, Yuanhang
    Qi, Zhengjian
    DYES AND PIGMENTS, 2023, 213
  • [26] Aggregation-induced emission (AIE)-active metallacycles with near-infrared emission for photodynamic therapy
    Shen, Qifei
    Gao, Kai
    Zhao, Zhiqin
    Gao, Anran
    Xu, Yanzi
    Wang, Heng
    Meng, Lingjie
    Zhang, Mingming
    Dang, Dongfeng
    CHEMICAL COMMUNICATIONS, 2023, 59 (94) : 14021 - 14024
  • [27] A novel BODIPY-based nano-photosensitizer with aggregation-induced emission for cancer photodynamic therapy
    Zhang, Yuting
    Li, Guojing
    Li, Jiong
    Wu, Ming
    Liu, Xiaolong
    Liu, Jingfeng
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (06)
  • [28] Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications
    Wang, Beibei
    Liu, Yuhao
    Chen, Xueqian
    Liu, Xiao-Ting
    Liu, Zhongyi
    Lu, Chao
    CHEMICAL SOCIETY REVIEWS, 2024, : 10189 - 10215
  • [29] Aggregation-induced emission-active amino acid/berberine hydrogels with enhanced photodynamic antibacterial and anti-biofilm activity
    Xie, Yan-Yan
    Zhang, Yan-Wen
    Liu, Xiao-Zhi
    Ma, Xiao-Fang
    Qin, Xiao-Tong
    Jia, Shi-Ru
    Zhong, Cheng
    CHEMICAL ENGINEERING JOURNAL, 2021, 413
  • [30] Constructing efficient and photostable photosensitizer with aggregation-induced emission by introducing highly electronegative nitrogen atom for photodynamic therapy
    Li, Tianwei
    Xu, Zhe
    Chen, Hong
    Zhen, Shijie
    Gu, Hua
    Zhao, Zujin
    Tang, Ben Zhong
    CHEMICAL ENGINEERING JOURNAL, 2023, 468