Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods

被引:19
|
作者
Ryu, Yeonjae [1 ]
Han, Geun Hee [1 ]
Jung, Eunsoo [1 ]
Hwang, Daehee [1 ]
机构
[1] Seoul Natl Univ, Sch Biol Sci, Seoul 08826, South Korea
关键词
batch correction; data integration; single-cell RNA-seq; SEQUENCING DATA; HETEROGENEITY; DYNAMICS;
D O I
10.14348/molcells.2023.0009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the increased number of single-cell RNA sequencing (scRNA-seq) datasets in public repositories, integrative analysis of multiple scRNA-seq datasets has become commonplace. Batch effects among different datasets are inevitable because of differences in cell isolation and handling protocols, library preparation technology, and sequencing platforms. To remove these batch effects for effective integration of multiple scRNA-seq datasets, a number of methodologies have been developed based on diverse concepts and approaches. These methods have proven useful for examining whether cellular features, such as cell subpopulations and marker genes, identified from a certain dataset, are consistently present, or whether their conditiondependent variations, such as increases in cell subpopulations in particular disease-related conditions, are consistently observed in different datasets generated under similar or distinct conditions. In this review, we summarize the concepts and approaches of the integration methods and their pros and cons as has been reported in previous literature.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 50 条
  • [41] Emerging deep learning methods for single-cell RNA-seq data analysis
    Jie Zheng
    Ke Wang
    Quantitative Biology, 2019, 7 (04) : 247 - 254
  • [42] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [43] Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets
    Audrey A. Omidsalar
    Carmel G. McCullough
    Lili Xu
    Stanley Boedijono
    Daniel Gerke
    Michelle G. Webb
    Zarko Manojlovic
    Adolfo Sequeira
    Mark F. Lew
    Marco Santorelli
    Geidy E. Serrano
    Thomas G. Beach
    Agenor Limon
    Marquis P. Vawter
    Brooke E. Hjelm
    Communications Biology, 7
  • [44] Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets
    Omidsalar, Audrey A.
    Mccullough, Carmel G.
    Xu, Lili
    Boedijono, Stanley
    Gerke, Daniel
    Webb, Michelle G.
    Manojlovic, Zarko
    Sequeira, Adolfo
    Lew, Mark F.
    Santorelli, Marco
    Serrano, Geidy E.
    Beach, Thomas G.
    Limon, Agenor
    Vawter, Marquis P.
    Hjelm, Brooke E.
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [45] Guidelines for reporting single-cell RNA-seq experiments
    Fullgrabe, Anja
    George, Nancy
    Green, Matthew
    Nejad, Parisa
    Aronow, Bruce
    Fexova, Silvie Korena
    Fischer, Clay
    Freeberg, Mallory Ann
    Huerta, Laura
    Morrison, Norman
    Scheuermann, Richard H.
    Taylor, Deanne
    Vasilevsky, Nicole
    Clarke, Laura
    Gehlenborg, Nils
    Kent, Jim
    Marioni, John
    Teichmann, Sarah
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1384 - 1386
  • [46] A SMARTer solution to stranded single-cell RNA-seq
    Gandlur, S.
    Pesant, M.
    Bolduc, N.
    Lee, S.
    Hardy, C.
    Das, A.
    Bostick, M.
    Farmer, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1716 - 1717
  • [47] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [48] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2023, 22 (5) : 433 - 440
  • [49] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    Nature Communications, 11
  • [50] From single-cell RNA-seq to transcriptional regulation
    Gioele La Manno
    Nature Biotechnology, 2019, 37 : 1421 - 1422