Modeling of the Battery Pack and Battery Management System towards an Integrated Electric Vehicle Application

被引:1
|
作者
Mawuntu, Nadya Novarizka [1 ]
Mu, Bao-Qi [1 ]
Doukhi, Oualid [1 ]
Lee, Deok-Jin [1 ]
机构
[1] Jeonbuk Natl Univ, Ctr Autonomous Intelligence & E Mobil, Dept Mech Design Engn, 567 Baekje Daero, Jeonju Si 54896, South Korea
基金
新加坡国家研究基金会;
关键词
LiB modeling; battery pack; BMS; EV; SOC estimation; CIRCUIT VOLTAGE TESTS; LITHIUM-ION BATTERIES; STATE-OF-CHARGE; EQUIVALENT-CIRCUIT; PARAMETER;
D O I
10.3390/en16207165
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The transportation sector is under increasing pressure to reduce greenhouse gas emissions by decarbonizing its operations. One prominent solution that has emerged is the adoption of electric vehicles (EVs). As the electric vehicles market experiences rapid growth, the utilization of lithium-ion batteries (LiB) has become the predominant choice for energy storage. However, it is important to note that lithium-ion battery technology is sensitive to factors, like excessive voltage and temperature. Therefore, the development of an accurate battery model and a reliable state of charge (SOC) estimator is crucial to safeguard against the overcharging and over-discharging of the battery. Numerous studies have been conducted to address lithium-ion battery cell modeling and SOC estimations. These studies have explored variations in the number of RC networks within the model and different estimation methods. However, it is worth mentioning that the capacity of a single lithium-ion battery cell is relatively low and cannot be directly employed in electric vehicles. To meet the total capacity and voltage requirements for electric vehicles, multiple cells are typically connected in series or parallel configurations to form a battery pack. Surprisingly, this aspect has often been overlooked in previous research. To tackle this overlooked challenge, our study introduces a comprehensive battery pack model and an advanced Battery Management System (BMS). We then integrate these components into an electric vehicle model. Subsequently, we simulate the integrated EV-BMS model under the conditions of four different urban driving scenarios to replicate real-world driving conditions. The BMS that we have developed includes an Extended Kalman Filter (EKF)-based SOC estimation system, a mechanism for controlling coolant flow, and a passive cell-balancing algorithm. These components work together to ensure the safe and efficient operation of the battery pack within the electric vehicles.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Review of thermal management system for battery electric vehicle
    He, Liange
    Jing, Haodong
    Zhang, Yan
    Li, Pengpai
    Gu, Zihan
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 59
  • [32] A New Practical Electric Vehicle Battery Management System
    Shi, Yanpeng
    Wu, Guoxin
    [J]. INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 704 - +
  • [33] Research on the System of Electric Vehicle Battery Management Strategy
    Yi, Li
    Peng, Sun
    [J]. PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING (ICCMCEE 2015), 2015, 37 : 774 - 779
  • [34] Modeling based on design of a dual thermal management system for the battery pack of a full electric minibus
    Martin-Martin, Leire
    Gastelurrutia, Jon
    Alfonso del Portillo, Luis
    Foersterling, Sven
    [J]. APPLIED THERMAL ENGINEERING, 2017, 124 : 1142 - 1158
  • [35] Thermal Management System Design and Simulation of Battery Pack for Electric Vehicles
    Wang, Jian
    Yang, Xiaoping
    [J]. CURRENT DEVELOPMENT OF MECHANICAL ENGINEERING AND ENERGY, PTS 1 AND 2, 2014, 494-495 : 100 - 103
  • [36] Modelling of the Battery Pack Thermal Management System for Hybrid Electric Vehicles
    Murashko, Kirill
    Wu, Huapeng
    Pyrhonen, Juha
    Laurila, Lasse
    [J]. 2014 16TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'14-ECCE EUROPE), 2014,
  • [37] Modeling of the thermal behavior of a lithium-ion battery pack for electric vehicle applications
    Yi, Jaeshin
    Shin, Chee Burm
    Hong, Young-jin
    Kim, Chisu
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [38] Modeling and total cost optimization of battery thermal management system in a hybrid electric vehicle
    Asef, Ali
    Chitsaz, Iman
    Madani, Navid
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 52
  • [39] Modeling Approach of an Air-Based Battery Thermal Management System for an Electric Vehicle
    Buidin, Thomas Imre Cyrille
    Mariasiu, Florin
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [40] Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles
    Mathew, M.
    Kong, Q. H.
    McGrory, J.
    Fowler, M.
    [J]. JOURNAL OF POWER SOURCES, 2017, 349 : 94 - 104