A Sliding Electrical Contact Solution Method Based on Reverse Rail Motion

被引:0
|
作者
Sun, Jian [1 ,2 ]
Wang, Qiuliang [1 ,2 ]
Cheng, Junsheng [2 ,3 ,4 ]
Xiong, Ling [2 ]
Cong, Yuantao [1 ,2 ]
Wang, Heyang [1 ,2 ]
Chen, Gongxuan [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[3] Qilu Zhongke, Inst Elect Engn & Adv Electromagnet Drive Technol, Jinan 250102, Peoples R China
[4] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Composite rail; electromagnetic rail launcher (EMRL); lining layer; multifield coupling; reverse motion; velocity skin effect; FORMULATION;
D O I
10.1109/TPS.2024.3370293
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This article is based on the local modeling method of rail reverse motion to solve the sliding electrical contact problem. The penalty function application method of the rail entry end face (nonequipotential surface) and the rail-armature interface under the technical system is derived. Only local modeling is performed near the contact domain, which greatly reduces the amount of computation. Through the numerical difference technique, it is allowed to move the number of noninteger meshes at each time step. The method does not require mesh reconstruction, and the element stiffness matrix only needs to be calculated once, which greatly improves the calculation efficiency. The finite element code is developed based on the MATLAB platform. The copper rail case is close to the calculation results of international numerical codes or experimental data, which verifies the correctness of the method. In addition, the electrical and thermal properties of the composite structure are evaluated and analyzed.
引用
收藏
页码:536 / 544
页数:9
相关论文
共 50 条
  • [41] 3D modeling of sliding electrical contact
    Hsieh, KT
    Kim, BK
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (01) : 237 - 239
  • [42] Diagnosing of a sliding contact mechanical condition of electrical machines
    Sablukov, VY
    Borovikov, YS
    Kachin, SI
    Gerasin, EI
    [J]. KORUS 2004, Vol 1, Proceedings, 2004, : 284 - 286
  • [43] A METHOD OF EVALUATING CONTACT STRENGTH OF RAIL STEEL
    KISLIK, VA
    KARMAZIN, AI
    [J]. INDUSTRIAL LABORATORY, 1965, 30 (12): : 1866 - &
  • [44] A lookup table-based method for wheel-rail contact analysis
    Bozzone, M.
    Pennestri, E.
    Salvini, P.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL OF MULTI-BODY DYNAMICS, 2011, 225 (K2) : 127 - 138
  • [45] Longitudinal Motion Control of AUV Based on Fuzzy Sliding Mode Method
    Qi, Duo
    Feng, Jinfu
    Yang, Jian
    [J]. JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2016, 2016
  • [46] On-rail solution for autonomous inspections in electrical substations
    Silva, Bruno P. A.
    Ferreira, Rafael A. M.
    Gomes, Selson C., Jr.
    Calado, Flavio A. R.
    Andrade, Roberto M.
    Porto, Matheus P.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2018, 90 : 53 - 58
  • [47] Non-contact and all-electrical method for monitoring the motion of semiconducting nanowires
    Hoch, S. W.
    Montague, J. R.
    Bright, V. M.
    Rogers, C. T.
    Bertness, K. A.
    Teufel, J. D.
    Lehnert, K. W.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (05)
  • [48] Thermal Response Analysis of Wheel-rail Sliding Contact Based on W-M Fractal Function
    Ding X.
    Yang B.
    Rong Y.
    Xiao S.
    Yang G.
    Zhu T.
    [J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (21): : 356 - 366
  • [49] Rolling contact fatigue and wear of two different rail steels under rolling-sliding contact
    Seo, Jung-Won
    Jun, Hyun-Kyu
    Kwon, Seok-Jin
    Lee, Dong-Hyeong
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2016, 83 : 184 - 194
  • [50] The analytical solution for sliding rounded-edge contact
    Ma, Lifeng
    Korsunsky, Alexander M.
    [J]. JOURNAL OF ELASTICITY, 2006, 82 (01) : 9 - 30