Non-Intrusive Load Decomposition Based on Instance-Batch Normalization Networks

被引:1
|
作者
Wang, Mao [1 ]
Liu, Dandan [1 ]
Li, Changzhi [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Elect & Informat Engn, 1851 Hucheng Ring Rd, Shanghai 201306, Peoples R China
关键词
non-intrusive load monitoring; instance-batch normalization network; attention mechanism; skip connection; transfer learning;
D O I
10.3390/en16072940
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
At present, the non-intrusive load decomposition method for low-frequency sampling data is as yet insufficient within the context of generalization performance, failing to meet the decomposition accuracy requirements when applied to novel scenarios. To address this issue, a non-intrusive load decomposition method based on instance-batch normalization network is proposed. This method uses an encoder-decoder structure with attention mechanism, in which skip connections are introduced at the corresponding layers of the encoder and decoder. In this way, the decoder can reconstruct a more accurate power sequence of the target. The proposed model was tested on two public datasets, REDD and UKDALE, and the performance was compared with mainstream algorithms. The results show that the F1 score was higher by an average of 18.4 when compared with mainstream algorithms. Additionally, the mean absolute error reduced by an average of 25%, and the root mean square error was reduced by an average of 22%.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Non-intrusive load decomposition based on CNN-LSTM hybrid deep learning model
    Zhou, Xinxin
    Feng, Jingru
    Li, Yang
    ENERGY REPORTS, 2021, 7 : 5762 - 5771
  • [32] Non-Intrusive Load Monitoring: A Review
    Schirmer, Pascal A.
    Mporas, Iosif
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (01) : 769 - 784
  • [33] A Survey on the Non-intrusive Load Monitoring
    Deng X.-P.
    Zhang G.-Q.
    Wei Q.-L.
    Peng W.
    Li C.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 644 - 663
  • [34] Enhancing neural non-intrusive load monitoring with generative adversarial networks
    Bao K.
    Ibrahimov K.
    Wagner M.
    Schmeck H.
    Energy Informatics, 1 (Suppl 1) : 295 - 302
  • [35] Adaptive Non-Intrusive Load Monitoring Based on Feature Fusion
    Kang, Ju-Song
    Yu, Miao
    Lu, Lingxia
    Wang, Bingnan
    Bao, Zhejing
    IEEE SENSORS JOURNAL, 2022, 22 (07) : 6985 - 6994
  • [36] A Non-Intrusive Load Monitoring System Based on A Cascaded Method
    Lian, K. L.
    Tung, K. S.
    Su, Y. C.
    2013 3RD INTERNATIONAL CONFERENCE ON ELECTRIC POWER AND ENERGY CONVERSION SYSTEMS (EPECS), 2013,
  • [37] Non-intrusive load fluctuation detection based on voting variance
    Yang D.
    Song Y.
    Yue J.
    Li L.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2022, 42 (07): : 46 - 50+110
  • [38] Non-Intrusive Load Monitoring Based on Multiscale Attention Mechanisms
    Yao, Lei
    Wang, Jinhao
    Zhao, Chen
    ENERGIES, 2024, 17 (08)
  • [39] A non-intrusive load identification method based on RNN model
    Liu H.
    Shi S.
    Xu X.
    Zhou D.
    Min R.
    Hu W.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2019, 47 (13): : 162 - 170
  • [40] Non-Intrusive Adaptive Load Identification Based on Siamese Network
    Yu, Miao
    Wang, Bingnan
    Lu, Lingxia
    Bao, Zhejing
    Qi, Donglian
    IEEE ACCESS, 2022, 10 : 11564 - 11573