Sensitivity Analysis of Genome-Scale Metabolic Flux Prediction

被引:0
|
作者
Niu, Puhua [1 ]
Soto, Maria J. [2 ]
Huang, Shuai [3 ]
Yoon, Byung-Jun [1 ,4 ]
Dougherty, Edward R. [1 ]
Alexander, Francis J. [4 ]
Blaby, Ian [2 ]
Qian, Xiaoning [1 ,4 ,5 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX USA
[2] US Dept Energy Joint Genome Inst, Lawrence Berkeley Natl Lab, Berkeley, CA USA
[3] Univ Washington Seattle, Dept Ind & Syst Engn, Seattle, WA USA
[4] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY USA
[5] Texas A&M Univ, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Bayesian network structure learning; metabolic engineering; optimal experimental design; regulated metabolic network modeling; uncertainty quantification; REGULATORY NETWORKS; EXPERIMENTAL-DESIGN; ESCHERICHIA-COLI; MODELS; STRATEGIES; BIOLOGY; SYSTEMS;
D O I
10.1089/cmb.2022.0368
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
TRIMER, Transcription Regulation Integrated with MEtabolic Regulation, is a genome-scale modeling pipeline targeting at metabolic engineering applications. Using TRIMER, regulated metabolic reactions can be effectively predicted by integrative modeling of metabolic reactions with a transcription factor-gene regulatory network (TRN), which is modeled through a Bayesian network (BN). In this article, we focus on sensitivity analysis of metabolic flux prediction for uncertainty quantification of BN structures for TRN modeling in TRIMER. We propose a computational strategy to construct the uncertainty class of TRN models based on the inferred regulatory order uncertainty given transcriptomic expression data. With that, we analyze the prediction sensitivity of the TRIMER pipeline for the metabolite yields of interest. The obtained sensitivity analyses can guide optimal experimental design (OED) to help acquire new data that can enhance TRN modeling and achieve specific metabolic engineering objectives, including metabolite yield alterations. We have performed small- and large-scale simulated experiments, demonstrating the effectiveness of our developed sensitivity analysis strategy for BN structure learning to quantify the edge importance in terms of metabolic flux prediction uncertainty reduction and its potential to effectively guide OED.
引用
收藏
页码:751 / 765
页数:15
相关论文
共 50 条
  • [21] Robust Analysis of Fluxes in Genome-Scale Metabolic Pathways
    Michael MacGillivray
    Amy Ko
    Emily Gruber
    Miranda Sawyer
    Eivind Almaas
    Allen Holder
    [J]. Scientific Reports, 7
  • [22] A PRACTICAL GUIDE TO GENOME-SCALE METABOLIC MODELS AND THEIR ANALYSIS
    Santos, Filipe
    Boele, Joost
    Teusink, Bas
    [J]. METHODS IN ENZYMOLOGY, VOL 500: METHODS IN SYSTEMS BIOLOGY, 2011, 500 : 509 - 532
  • [23] Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis
    Acevedo, Alejandro
    Conejeros, Raul
    Aroca, German
    [J]. PLOS ONE, 2017, 12 (06):
  • [24] A metabolite-centric view on flux distributions in genome-scale metabolic models
    Riemer, S. Alexander
    Rex, Rene
    Schomburg, Dietmar
    [J]. BMC SYSTEMS BIOLOGY, 2013, 7
  • [25] Counting and Correcting Thermodynamically Infeasible Flux Cycles in Genome-Scale Metabolic Networks
    De Martino, Daniele
    Capuani, Fabrizio
    Mori, Matteo
    De Martino, Andrea
    Marinari, Enzo
    [J]. METABOLITES, 2013, 3 (04) : 946 - 966
  • [26] Exploring metabolic pathways in genome-scale networks via generating flux modes
    Rezola, A.
    de Figueiredo, L. F.
    Brock, M.
    Pey, J.
    Podhorski, A.
    Wittmann, C.
    Schuster, S.
    Bockmayr, A.
    Planes, F. J.
    [J]. BIOINFORMATICS, 2011, 27 (04) : 534 - 540
  • [27] Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass
    Rahul Shaw
    Sudip Kundu
    [J]. Journal of Biosciences, 2015, 40 : 819 - 828
  • [28] Genome-scale modeling for metabolic engineering
    Simeonidis, Evangelos
    Price, Nathan D.
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (03) : 327 - 338
  • [29] Applications of genome-scale metabolic reconstructions
    Oberhardt, Matthew A.
    Palsson, Bernhard O.
    Papin, Jason A.
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2009, 5
  • [30] Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production
    Wang, Qingzhao
    Chen, Xun
    Yang, Yudi
    Zhao, Xueming
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 73 (04) : 887 - 894