In-situ construction of barium-induced cathode electrolyte interphase to enable mechanostable high-performance zinc-ion batteries

被引:11
|
作者
Kulkarni, Pranav [1 ]
Jung, Hyun Young [1 ]
机构
[1] Gyeongsang Natl Univ, Dept Energy Engn, Jinju si 52725, Gyeongnam, South Korea
关键词
Zn-Ion battery; Cathode electrode interphase; Vanadium oxide; Ba intercalation; Multivalent metal; STORAGE; ENERGY; V3O7-CENTER-DOT-H2O;
D O I
10.1016/j.mtener.2023.101254
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium-based compounds with open frameworks are recently the subject of intensive research as cathodes for aqueous zinc-ion batteries (AZIBs) with the advantages of high safety and high energy density. However, the spontaneous vanadium dissolution from a cathode and the formation of by-products in aqueous electrolytes are challenging issues that must be addressed as they cause substan-tial capacity degradation and inadequacy in cycle life. Here, we develop an efficient way to suppress vanadium dissolution via an in-situ formed cathode electrolyte interface (CEI) by incorporating barium ions in the vanadium framework. Such barium ions increase the interlayer structure and act as a sacrificial agent to form an in-situ BaSO4 CEI that reduces vanadium dissolution while enhancing the diffusion kinetics. As a cathodic active material, Ba-V6O13 nanobelts show a specific capacity of 305 mAh g(-1) at 0.1 A g(-1) and an energy density of 213 Wh/kg, offering excellent reversible capacity retention of 99.94% per cycle. Besides, it operates stably even after physically cutting the device and exhibits excellent interfacial stability. This work presents an innovative strategy to accelerate the commerciali-zation of safe, fiexible AZIBs.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [22] Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material
    Zhou, Weijun
    Chen, Minfeng
    Wang, Anran
    Huang, Aixiang
    Chen, Jizhang
    Xu, Xinwu
    Wong, Ching-Ping
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 : 377 - 384
  • [23] Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries
    Zhang, Xiaotan
    Li, Jiangxu
    Ao, Huaisheng
    Liu, Dongyan
    Shi, Lei
    Wang, Chengming
    Zhu, Yongchun
    Qian, Yitai
    ENERGY STORAGE MATERIALS, 2020, 30 : 337 - 345
  • [24] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Jiayu Bai
    Songjie Hu
    Lirong Feng
    Xinhui Jin
    Dong Wang
    Kai Zhang
    Xiaohui Guo
    Chinese Chemical Letters, 2024, 35 (09) : 517 - 521
  • [25] Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries
    Peng, Haijun
    Fang, Yun
    Wang, Jinzhe
    Ruan, Pengchao
    Tang, Yan
    Lu, Bingan
    Cao, Xinxin
    Liang, Shuquan
    Zhou, Jiang
    MATTER, 2022, 5 (12) : 4363 - 4378
  • [26] In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries
    Shaojie Zhang
    Jiajia Ye
    Huaisheng Ao
    Mingying Zhang
    Xilong Li
    Zhibin Xu
    Zhiguo Hou
    Yitai Qian
    Nano Research, 2023, 16 : 449 - 457
  • [27] Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries
    Zhao, Jingteng
    Song, Congying
    Ma, Shaobo
    Gao, Qixin
    Li, Zhujie
    Dai, Ying
    Li, Guoxing
    ENERGY STORAGE MATERIALS, 2023, 61
  • [28] An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries
    Zhang, Lishang
    Zhang, Bao
    Hu, Jisong
    Liu, Jia
    Miao, Ling
    Jiang, Jianjun
    SMALL METHODS, 2021, 5 (06)
  • [29] Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries
    Huang, Siwen
    Hou, Lei
    Li, Tianyu
    Jiao, Yucong
    Wu, Peiyi
    ADVANCED MATERIALS, 2022, 34 (14)
  • [30] Bifunctional electrolyte additive ammonium persulfate for high-performance aqueous zinc-ion batteries
    Xu, Yuanmei
    Li, Xueshi
    Wang, Xiatong
    Weng, Qijia
    Sun, Weijun
    MATERIALS TODAY SUSTAINABILITY, 2024, 28