Conservative Allen-Cahn equation;
Energy dissipation law;
Maximum bound principle;
Multi-physical structure-preserving method;
Linear iteration;
Error estimate;
FINITE-DIFFERENCE SCHEME;
MOLECULAR-BEAM EPITAXY;
TIME-STEPPING STRATEGY;
ENERGY STABLE SCHEMES;
MEAN-CURVATURE FLOW;
NUMERICAL-ANALYSIS;
MOTION;
MODEL;
D O I:
10.1007/s11075-024-01757-4
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The conservative Allen-Cahn equation satisfies three important physical properties, namely the mass conservation law, the energy dissipation law, and the maximum bound principle. However, very few numerical methods can preserve them at the same time. In this paper, we present a multi-physical structure-preserving method for the conservative Allen-Cahn equation with nonlocal constraint by combining the averaged vector field method in time and the central finite difference scheme in space, which can conserve all three properties simultaneously at the fully discrete level. We propose an efficient linear iteration algorithm to solve the presented nonlinear scheme and prove that the iteration satisfies the maximum bound principle and a contraction mapping property in the discrete L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}<^>{\varvec{\infty }}$$\end{document} norm. Furthermore, concise error estimates in the maximum norm are established on non-uniform time meshes. The theoretical findings of the proposed scheme are verified by several benchmark examples, where an adaptive time-stepping strategy is employed.
机构:
Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Li, Jingwei
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USABeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Ju, Lili
Cai, Yongyong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Cai, Yongyong
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaBeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
机构:
Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai, ThailandChiang Mai Univ, Fac Sci, Dept Math, Chiang Mai, Thailand
Manorot, Panason
Wongsaijai, Ben
论文数: 0引用数: 0
h-index: 0
机构:
Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai, Thailand
Chiang Mai Univ, Adv Res Ctr Computat Simulat, Chiang Mai 50200, ThailandChiang Mai Univ, Fac Sci, Dept Math, Chiang Mai, Thailand
Wongsaijai, Ben
Poochinapan, Kanyuta
论文数: 0引用数: 0
h-index: 0
机构:
Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai, Thailand
Chiang Mai Univ, Adv Res Ctr Computat Simulat, Chiang Mai 50200, ThailandChiang Mai Univ, Fac Sci, Dept Math, Chiang Mai, Thailand