Unconditionally Maximum Bound Principle Preserving Linear Schemes for the Conservative Allen-Cahn Equation with Nonlocal Constraint
被引:54
|
作者:
Li, Jingwei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Li, Jingwei
[1
,2
]
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USABeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Ju, Lili
[3
]
Cai, Yongyong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Cai, Yongyong
[1
,2
]
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaBeijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Feng, Xinlong
[4
]
机构:
[1] Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Modified Allen-Cahn equation;
Maximum bound principle;
Mass conservation;
Exponential time differencing;
Stabilizing technique;
35B50;
65M12;
35K55;
65R20;
TIME DIFFERENCING SCHEMES;
HILLIARD EQUATION;
NUMERICAL APPROXIMATIONS;
ENERGY;
ALGORITHMS;
EFFICIENT;
ORDER;
D O I:
10.1007/s10915-021-01512-0
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In comparison with the Cahn-Hilliard equation, the classic Allen-Cahn equation satisfies the maximum bound principle (MBP) but fails to conserve the mass along the time. In this paper, we consider the MBP and corresponding numerical schemes for the modified Allen-Cahn equation, which is formed by introducing a nonlocal Lagrange multiplier term to enforce the mass conservation. We first study sufficient conditions on the nonlinear potentials under which the MBP holds and provide some concrete examples of nonlinear functions. Then we propose first and second order stabilized exponential time differencing schemes for time integration, which are linear schemes and unconditionally preserve the MBP in the time discrete level. Convergence of these schemes is analyzed as well as their energy stability. Various two and three dimensional numerical experiments are also carried out to validate the theoretical results and demonstrate the performance of the proposed schemes.
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Du, Qiang
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Ju, Lili
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Li, Xiao
Qiao, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, Chongqing Res Inst Big Data, Chongqing 400000, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Li, Jiayin
Li, Jingwei
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Li, Jingwei
Tong, Fenghua
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USAPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
Shen, Jie
Tang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
South Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Hong Kong Baptist Univ, Inst Computat & Theoret Studies, Kowloon Tong, Hong Kong, Peoples R ChinaPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
Tang, Tao
Yang, Jiang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
Hou, Dianming
Zhang, Tianxiang
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
Zhang, Tianxiang
Zhu, Hongyi
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ Zhuhai Campus, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China