Classification Analysis of Copy Papers Using Infrared Spectroscopy and Machine Learning Modeling

被引:5
|
作者
Lee, Yong-Ju [1 ]
Lee, Tai-Ju [2 ]
Kim, Hyoung Jin [1 ]
机构
[1] Kookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
[2] Natl Inst Forest Sci, Dept Forest Prod & Ind, Div Forest Ind Mat, Seoul 02455, South Korea
关键词
Attenuated-total-reflection infrared spectroscopy (ATR-IR); Partial least squares-discriminant; analysis (PLS-DA); Support vector machine (SVM); K-nearest neighbor (KNN); Machine learning; Document forgety; Forensic document analysis; FT-IR; FEEDING-BEHAVIOR; CONFUSION MATRIX; IDENTIFICATION; VALIDATION; FINISHES; SPECTRA; SYSTEM; RAMAN;
D O I
10.15376/biores.19.1.160-182
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The evaluation and classification of chemical properties in different copypaper products could significantly help address document forgery. This study analyzes the feasibility of utilizing infrared spectroscopy in conjunction with machine learning algorithms for classifying copy-paper products. A dataset comprising 140 infrared spectra of copy-paper samples was collected. The classification models employed in this study include partial least squares-discriminant analysis, support vector machine, and K-nearest neighbors. The key findings indicate that a classification model based on the use of attenuated-total-reflection infrared spectroscopy demonstrated good performance, highlighting its potential as a valuable tool in accurately classifying paper products and ensuring assisting in solving criminal cases involving document forgery.
引用
收藏
页码:160 / 182
页数:23
相关论文
共 50 条
  • [21] Classification of document papers by infrared spectroscopy and multivariate statistical techniques
    Kher, A
    Mulholland, M
    Reedy, B
    Maynard, P
    APPLIED SPECTROSCOPY, 2001, 55 (09) : 1192 - 1198
  • [22] A machine learning model for the classification of illicit drug substances with Fourier transform infrared spectroscopy
    Chang, Kah Haw
    Chua, Hui Na
    MICROCHEMICAL JOURNAL, 2025, 212
  • [23] Rapid diagnosis and classification of cervical lesions by serum infrared spectroscopy combined with machine learning
    Qu, Hanwen
    Yan, Ziwei
    Wu, Wei
    Chen, Fangfang
    Ma, Cailing
    Chen, Yanxia
    Wang, Jing
    Lv, Xiaoyi
    AOPC 2021: BIOMEDICAL OPTICS, 2021, 12067
  • [24] Detection of adulteration in milk using infrared spectroscopy and machine learning.
    Asseis Neto, H.
    Tavares, W. L. F.
    Ribeiro, D. C. S. Z.
    Lima, J. S.
    Campos, S. V. A.
    Fonseca, L. M.
    JOURNAL OF DAIRY SCIENCE, 2019, 102 : 38 - 38
  • [25] Detection of Adulteration in Coconut Milk using Infrared Spectroscopy and Machine Learning
    Al-Awadhi, Mokhtar A.
    Deshmukh, Ratnadeep R.
    2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021), 2021, : 72 - 75
  • [26] Automatic classification of Candida species using Raman spectroscopy and machine learning
    Gabriela Fernandez-Manteca, Maria
    Ocampo-Sosa, Alain A.
    Ruiz de Alegria-Puig, Carlos
    Pia Roiz, Maria
    Rodriguez-Grande, Jorge
    Madrazo, Fidel
    Calvo, Jorge
    Rodriguez-Cobo, Luis
    Miguel Lopez-Higuera, Jose
    Carmen Farinas, Maria
    Cobo, Adolfo
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 290
  • [27] Classification of Wood Chips Using Electrical Impedance Spectroscopy and Machine Learning
    Tiitta, Markku
    Tiitta, Valtteri
    Heikkinen, Jorma
    Lappalainen, Reijo
    Tomppo, Laura
    SENSORS, 2020, 20 (04)
  • [28] Using Machine Learning for Classification of Cancer Cells from Raman Spectroscopy
    Aversano, Lerina
    Bernardi, Mario Luca
    Calgano, Vincenzo
    Cimitile, Marta
    Esposito, Concetta
    Iammarino, Martina
    Pisco, Marco
    Spaziani, Sara
    Verdone, Chiara
    DELTA: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS, 2022, : 15 - 24
  • [29] Improved Classification Performance of Bacteria in Interference Using Raman and Fourier-Transform Infrared Spectroscopy Combined with Machine Learning
    Zhang, Pengjie
    Xu, Jiwei
    Du, Bin
    Yang, Qianyu
    Liu, Bing
    Xu, Jianjie
    Tong, Zhaoyang
    MOLECULES, 2024, 29 (13):
  • [30] Performance Analysis of Modulation Classification Using Machine learning
    Nisha, G.
    Vijayan, Vishnupriya
    Jose, Renu
    2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 70 - 74