Classification Analysis of Copy Papers Using Infrared Spectroscopy and Machine Learning Modeling

被引:5
|
作者
Lee, Yong-Ju [1 ]
Lee, Tai-Ju [2 ]
Kim, Hyoung Jin [1 ]
机构
[1] Kookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
[2] Natl Inst Forest Sci, Dept Forest Prod & Ind, Div Forest Ind Mat, Seoul 02455, South Korea
关键词
Attenuated-total-reflection infrared spectroscopy (ATR-IR); Partial least squares-discriminant; analysis (PLS-DA); Support vector machine (SVM); K-nearest neighbor (KNN); Machine learning; Document forgety; Forensic document analysis; FT-IR; FEEDING-BEHAVIOR; CONFUSION MATRIX; IDENTIFICATION; VALIDATION; FINISHES; SPECTRA; SYSTEM; RAMAN;
D O I
10.15376/biores.19.1.160-182
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The evaluation and classification of chemical properties in different copypaper products could significantly help address document forgery. This study analyzes the feasibility of utilizing infrared spectroscopy in conjunction with machine learning algorithms for classifying copy-paper products. A dataset comprising 140 infrared spectra of copy-paper samples was collected. The classification models employed in this study include partial least squares-discriminant analysis, support vector machine, and K-nearest neighbors. The key findings indicate that a classification model based on the use of attenuated-total-reflection infrared spectroscopy demonstrated good performance, highlighting its potential as a valuable tool in accurately classifying paper products and ensuring assisting in solving criminal cases involving document forgery.
引用
收藏
页码:160 / 182
页数:23
相关论文
共 50 条
  • [1] A Study on the Classification of European Copy Papers with Infrared Spectroscopy and Principal Component Analysis
    Kim J.
    Kang K.-H.
    Kim K.-J.
    Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2022, 54 (04): : 31 - 41
  • [2] Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy
    Afara, Isaac O.
    Sarin, Jaakko K.
    Ojanen, Simo
    Finnila, Mikko A. J.
    Herzog, Walter
    Saarakkala, Simo
    Korhonen, Rami K.
    Toyras, Juha
    CELLULAR AND MOLECULAR BIOENGINEERING, 2020, 13 (03) : 219 - 228
  • [3] Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy
    Isaac O. Afara
    Jaakko K. Sarin
    Simo Ojanen
    Mikko A. J. Finnilä
    Walter Herzog
    Simo Saarakkala
    Rami K. Korhonen
    Juha Töyräs
    Cellular and Molecular Bioengineering, 2020, 13 : 219 - 228
  • [4] Predictive Modeling for Degree of Substitution of Cellulose Acetate using Infrared Spectroscopy and Machine Learning
    Lee Y.J.
    Lee J.E.
    Gwon J.G.
    Lee T.J.
    Kim H.J.
    Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2023, 55 (05): : 83 - 95
  • [5] Classification of multiple cancer types by combination of plasma-based near-infrared spectroscopy analysis and machine learning modeling
    Zhu, Jing
    Yang, Chenxi
    Song, Siyu
    Wang, Ruting
    Gu, Liqiang
    Chen, Zhongjian
    ANALYTICAL BIOCHEMISTRY, 2023, 669
  • [6] Soil Urea Analysis Using Mid-Infrared Spectroscopy and Machine Learning
    Haritha, J.
    Valarmathi, R. S.
    Kalamani, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (03): : 1867 - 1880
  • [7] Fungi Classification in Various Growth Stages Using Shortwave Infrared (SWIR) Spectroscopy and Machine Learning
    Liu, Zhuo
    Li, Yanjie
    JOURNAL OF FUNGI, 2022, 8 (09)
  • [8] Classification of Urea Content in Fish Using Absorbance Near-Infrared Spectroscopy and Machine Learning
    Ninh, Duy Khanh
    Phan, Kha Duy
    Nguyen, Thu Thi Anh
    Dang, Minh Nhat
    Thanh, Nhan Le
    Ferrero, Fabien
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [9] Classification of Histamine Content in Fish Using Near-Infrared Spectroscopy and Machine Learning Techniques
    Ninh, Duy Khanh
    Phan, Kha Duy
    Vo, Cong Tuan
    Dang, Minh Nhat
    Thanh, Nhan Le
    INFORMATION, 2024, 15 (09)
  • [10] Classification of Semiconductors Using Photoluminescence Spectroscopy and Machine Learning
    Yu, Yinchuan
    McCluskey, Matthew D.
    APPLIED SPECTROSCOPY, 2022, 76 (02) : 228 - 234