Towards global long-term water transparency products from the Landsat archive

被引:9
|
作者
Maciel, Daniel A. [1 ]
Pahlevan, Nima [2 ,3 ]
Barbosa, Claudio C. F. [1 ]
Martins, Vitor S. [4 ]
Smith, Brandon [2 ,3 ]
O'Shea, Ryan E. [2 ,3 ]
Balasubramanian, Sundarabalan, V [5 ,6 ]
Saranathan, Arun M. [2 ,3 ]
Novo, Evlyn M. L. M. [1 ]
机构
[1] Earth Observat Coordinat Natl Inst Space Res INPE, Instrumentat Lab Aquat Syst LabISA, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] NASA, Goddard Space Flight Ctr GSFC, Greenbelt, MD USA
[3] Syst Sci & Applicat Inc SSAI, Lanham, MD USA
[4] Mississippi State Univ, Dept Agr & Biol Engn, Starkville, MS USA
[5] UMBC, Goddard Earth Sci Technol & Res GESTAR 2, Baltimore, MD 21251 USA
[6] Geosensing & Imaging Consultancy, Trivandrum 695001, Kerala, India
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
Secchi disk depth; Water transparency; Landsat; Water quality; Machine learning; Time -series analysis; REMOTE-SENSING REFLECTANCE; SUSPENDED SEDIMENT CONCENTRATIONS; DIFFUSE ATTENUATION COEFFICIENT; INHERENT OPTICAL-PROPERTIES; ATMOSPHERIC CORRECTION; CHLOROPHYLL-A; SECCHI DEPTH; COMPLEX WATERS; INLAND; COLOR;
D O I
10.1016/j.rse.2023.113889
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Secchi Disk Depth (Z(sd)) is one of the most fundamental and widely used water-quality indicators quantifiable via optical remote sensing. Despite decades of research, development, and demonstrations, currently, there is no operational model that enables the retrieval of Z(sd) from the rich archive of Landsat, the long-standing civilian Earth-observation program (1972 - present). Devising a robust Z(sd) model requires a comprehensive in situ dataset for testing and validation, enabling consistent mapping across optically varying global aquatic ecosystems. This study utilizes Mixture Density Networks (MDNs) trained with a large in situ dataset (N = 5689) from 300+ water bodies to formulate and implement a global Z(sd) algorithm for Landsat sensors, including the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) aboard Landsat-5, -7, -8, and -9, respectively. Through an extensive Monte Carlo cross-validation with in situ data, we showed that MDNs improved Z(sd) retrieval when compared to other commonly used machine-learning (ML) models and recently developed semi-analytical algorithms, achieving a median symmetric accuracy (epsilon) of similar to 29% and median bias (beta) of similar to 3%). A fully trained MDN model was then applied to atmospherically corrected Landsat data (i.e., remote sensing reflectance; R-rs) to both further validate our MDN-estimated Z(sd) products using an independent global satellite-to-in situ matchup dataset (N = 3534) and to demonstrate their utility in time-series analyses (1984 - present) via selected lakes and coastal estuaries. The quality of R-rs products rigorously assessed for the Landsat sensors indicated sensor-/band-dependent epsilon ranging from 8% to 37%. For our Z(sd) products, we found epsilon similar to 39% and beta similar to 8% for the Landsat-8/OLI matchups. We observed higher errors and biases for TM and ETM+, which are explained by uncertainties in R-rs products induced by uncertainties in atmospheric correction and instrument calibration. Once these sources of uncertainty are, to the extent possible, characterized and accounted for, our developed model can then be employed to evaluate long-term trends in water transparency across unprecedented spatiotemporal scales, particularly in poorly studied regions of the world in a consistent manner.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Lunar soils: A long-term archive for the galactic environment of the heliosphere?
    Wimmer-Schweingruber, RF
    Bochsler, P
    SOLAR AND GALACTIC COMPOSITION, 2001, 598 : 399 - 404
  • [32] Long-term changes in a zooplankton community revealed by the sediment archive
    Vehmaa, Anu
    Katajisto, Tarja
    Candolin, Ulrika
    LIMNOLOGY AND OCEANOGRAPHY, 2018, 63 (05) : 2126 - 2139
  • [33] Long-term global change from Mediterranean Sea sediments
    Castagnoli, GC
    Bonino, G
    Zhu, GM
    PAST AND PRESENT VARIABILITY OF THE SOLAR-TERRESTRIAL SYSTEM: MEASUREMENT, DATA ANALYSIS AND THEORETICAL MODELS, 1997, 133 : 89 - 93
  • [34] Towards long-term responses in Fukushima
    Reich, Michael R.
    Goto, Aya
    LANCET, 2015, 386 (9992): : 498 - 500
  • [35] TOWARDS THE IMPROVEMENT OF LONG-TERM FORECASTING
    VOBORIL, J
    POLITICKA EKONOMIE, 1984, 32 (02) : 133 - 142
  • [36] Towards Long-Term Collective Experiments
    Vaussard, Florian
    Retornaz, Philippe
    Roelofsen, Steven
    Bonani, Michael
    Rey, Francois
    Mondada, Francesco
    INTELLIGENT AUTONOMOUS SYSTEMS 12 , VOL 2, 2013, 194 : 683 - 692
  • [37] Towards Long-term Autonomy for UAS
    Mersha, Abeje Y.
    Reiling, Mark
    Meijering, Rene
    2020 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'20), 2020, : 517 - 522
  • [38] Towards Long-term Fairness in Recommendation
    Ge, Yingqiang
    Liu, Shuchang
    Gao, Ruoyuan
    Xian, Yikun
    Li, Yunqi
    Zhao, Xiangyu
    Pei, Changhua
    Sun, Fei
    Ge, Junfeng
    Ou, Wenwu
    Zhang, Yongfeng
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 445 - 453
  • [39] Gestalt of a Long-Term Archive Management System on Semantic Grid
    Chiang, Johannes K.
    Yen, Eric
    2013 INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS TECHNOLOGY (ICCAT), 2013,
  • [40] A redistribution tool for long-term archive of astronomical observation data
    Sun, C.
    Yu, C.
    Cui, C.
    He, B.
    Xiao, J.
    Li, Z.
    Tang, S.
    Sun, J.
    ASTRONOMY AND COMPUTING, 2020, 32