Improving Query and Assessment Quality in Text-Based Interactive Video Retrieval Evaluation

被引:1
|
作者
Bailer, Werner [1 ]
Arnold, Rahel [2 ]
Benz, Vera [2 ]
Coccomini, Davide Alessandro [3 ]
Gkagkas, Anastasios [4 ]
Gudmundsson, Gylfi Thor [5 ]
Heller, Silvan [2 ]
Jonsson, Bjorn Thor [5 ]
Lokoc, Jakub [6 ]
Messina, Nicola [3 ]
Pantelidis, Nick [4 ]
Wu, Jiaxin [7 ]
机构
[1] JOANNEUM Res, Graz, Austria
[2] Univ Basel, Basel, Switzerland
[3] CNR ISTI, Pisa, Italy
[4] CERTH ITI, Thessaloniki, Greece
[5] Reykjavik Univ, Reykjavik, Iceland
[6] Charles Univ Prague, Prague, Czech Republic
[7] City Univ Hong Kong, Hong Kong, Peoples R China
关键词
video retrieval; evaluation; benchmarking; quality assurance;
D O I
10.1145/3591106.3592281
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Different task interpretations are a highly undesired element in interactive video retrieval evaluations. When a participating team focuses partially on a wrong goal, the evaluation results might become partially misleading. In this paper, we propose a process for refining known-item and open-set type queries, and preparing the assessors that judge the correctness of submissions to openset queries. Our findings from recent years reveal that a proper methodology can lead to objective query quality improvements and subjective participant satisfaction with query clarity.
引用
收藏
页码:597 / 601
页数:5
相关论文
共 50 条
  • [41] DotCHA: An Interactive 3D Text-based CAPTCHA
    Kim, Suzi
    Choi, Sunghee
    JOURNAL OF WEB ENGINEERING, 2020, 18 (08): : 837 - 863
  • [42] A Text-Based Deep Reinforcement Learning Framework for Interactive Recommendation
    Wang, Chaoyang
    Guo, Zhiqiang
    Li, Jianjun
    Pan, Peng
    Li, Guohui
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 537 - 544
  • [43] Old fashion text-based image retrieval using FCA
    Ahmad, I
    Jang, TS
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 33 - 36
  • [44] Learning Semantic Polymorphic Mapping for Text-Based Person Retrieval
    Li J.
    Jiang M.
    Kong J.
    Tao X.
    Luo X.
    IEEE Transactions on Multimedia, 2024, 26 : 1 - 14
  • [45] Adaptive Uncertainty-Based Learning for Text-Based Person Retrieval
    Li, Shenshen
    He, Chen
    Xu, Xing
    Shen, Fumin
    Yang, Yang
    Shen, Heng Tao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3172 - 3180
  • [46] Exploiting Visual Concepts to Improve Text-Based Image Retrieval
    Tollari, Sabrina
    Detyniecki, Marcin
    Marsala, Christophe
    Fakeri-Tabrizi, Ali
    Amini, Massih-Reza
    Gallinari, Patrick
    ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2009, 5478 : 701 - 705
  • [47] SUM: Serialized Updating and Matching for text-based person retrieval
    Wang, Zijie
    Zhu, Aichun
    Xue, Jingyi
    Jiang, Daihong
    Liu, Chao
    Li, Yifeng
    Hu, Fangqiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [48] Text-Based and Content-Based Image Retrieval on Flickr: DEMO
    Manuel Barrios, Juan
    Diaz-Espinoza, Diego
    Bustos, Benjamin
    SISAP 2009: 2009 SECOND INTERNATIONAL WORKSHOP ON SIMILARITY SEARCH AND APPLICATIONS, PROCEEDINGS, 2009, : 156 - 157
  • [49] Simulating Virtual Organizations for Research: A Comparative Empirical Evaluation of Text-Based, Video, and Virtual Reality Video Vignettes
    van Zelderen, Anand P. A.
    Masters-Waage, Theodore C.
    Dries, Nicky
    Menges, Jochen I.
    Sanchez, Diana R.
    ORGANIZATIONAL RESEARCH METHODS, 2024,
  • [50] Document Expansion for Text-Based Image Retrieval at CLEF 2009
    Min, Jinming
    Wilkins, Peter
    Leveling, Johannes
    Jones, Gareth J. F.
    MULTILINGUAL INFORMATION ACCESS EVALUATION II: MULTIMEDIA EXPERIMENTS, PT II, 2010, 6242 : 172 - 176