Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches

被引:8
|
作者
Liu, Xiao-Ying [1 ]
Mei, Xin-Yue [2 ]
机构
[1] Guangdong Polytech Sci & Technol, Zhuhai, Peoples R China
[2] Macau Univ Sci & Technol, Inst Syst Engn, Taipa, Peoples R China
关键词
multi-omics data; drug sensitivity prediction; deep learning; SPCA; similarity network fusion; CANCER; LANDSCAPE;
D O I
10.3389/fbioe.2023.1156372
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
With the rapid development of multi-omics technologies and accumulation of large-scale bio-datasets, many studies have conducted a more comprehensive understanding of human diseases and drug sensitivity from multiple biomolecules, such as DNA, RNA, proteins and metabolites. Using single omics data is difficult to systematically and comprehensively analyze the complex disease pathology and drug pharmacology. The molecularly targeted therapy-based approaches face some challenges, such as insufficient target gene labeling ability, and no clear targets for non-specific chemotherapeutic drugs. Consequently, the integrated analysis of multi-omics data has become a new direction for scientists to explore the mechanism of disease and drug. However, the available drug sensitivity prediction models based on multi-omics data still have problems such as overfitting, lack of interpretability, difficulties in integrating heterogeneous data, and the prediction accuracy needs to be improved. In this paper, we proposed a novel drug sensitivity prediction (NDSP) model based on deep learning and similarity network fusion approaches, which extracts drug targets using an improved sparse principal component analysis (SPCA) method for each omics data, and construct sample similarity networks based on the sparse feature matrices. Furthermore, the fused similarity networks are put into a deep neural network for training, which greatly reduces the data dimensionality and weakens the risk of overfitting problem. We use three omics of data, RNA sequence, copy number aberration and methylation, and select 35 drugs from Genomics of Drug Sensitivity in Cancer (GDSC) for experiments, including Food and Drug Administration (FDA)-approved targeted drugs, FDA-unapproved targeted drugs and non-specific therapies. Compared with some current deep learning methods, our proposed method can extract highly interpretable biological features to achieve highly accurate sensitivity prediction of targeted and non-specific cancer drugs, which is beneficial for the development of precision oncology beyond targeted therapy.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
    Vidhi Malik
    Yogesh Kalakoti
    Durai Sundar
    BMC Genomics, 22
  • [42] A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes
    Guo, Yang
    Zheng, Jianning
    Shang, Xuequn
    Li, Zhanhuai
    GENES, 2018, 9 (07):
  • [43] A Deep Learning Fusion Clustering framework for breast cancer subtypes identification by integrating multi-omics data
    Liu Shuangshuang
    Qi Lin
    Tie Yun
    Liu Fenghui
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1710 - 1714
  • [44] A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment
    Wekesa, Jael Sanyanda
    Kimwele, Michael
    FRONTIERS IN GENETICS, 2023, 14
  • [45] Drug Discovery and Development for Heart Failure Using Multi-Omics Approaches
    Rasooly, Danielle
    Pereira, Alexandre C.
    Joseph, Jacob
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (06)
  • [46] Predicting Drug Response Based on Multi-Omics Fusion and Graph Convolution
    Peng, Wei
    Chen, Tielin
    Dai, Wei
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (03) : 1384 - 1393
  • [47] Multi-omics assists genomic prediction of maize yield with machine learning approaches
    Chengxiu Wu
    Jingyun Luo
    Yingjie Xiao
    Molecular Breeding, 2024, 44
  • [48] Multi-omics assists genomic prediction of maize yield with machine learning approaches
    Wu, Chengxiu
    Luo, Jingyun
    Xiao, Yingjie
    MOLECULAR BREEDING, 2024, 44 (02)
  • [49] Deep latent space fusion for adaptive representation of heterogeneous multi-omics data
    Zhang, Chengming
    Chen, Yabin
    Zeng, Tao
    Zhang, Chuanchao
    Chen, Luonan
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [50] Deep Learning for Integrated Analysis of Insulin Resistance with Multi-Omics Data
    Huang, Eunchong
    Kim, Sarah
    Ahn, TaeJin
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (02): : 1 - 14