On a conjecture on shifted primes with large prime factors

被引:2
|
作者
Ding, Yuchen [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Shifted prime; The Bombieri-Vinogradov theorem; Dichotomy; Exceptional set; VALUES;
D O I
10.1007/s00013-022-01820-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P be the set of all primes and pi(x) be the number of primes up to x. For any n >= 2, let P+(n) be the largest prime factor of n. For 0 < c < 1, let T-c(x) = # {p <= x : p is an element of P , P+(p - 1) >= p(C)}. In this note, we prove that there exists some c < 1 such that lim sup (x ->infinity) T-c(x)/pi(x) < 1/2, which disproves a conjecture of Chen and Chen.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 50 条
  • [31] Divisors of Shifted Primes
    Koukoulopoulos, Dimitris
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (24) : 4585 - 4627
  • [32] On Products of Shifted Primes
    P. Berrizbeitia
    P.D.T.A Elliott
    The Ramanujan Journal, 1998, 2 : 219 - 223
  • [33] On the divisors of shifted primes
    De Koninck, Jean-Marie
    Katai, Imre
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 998 - 1004
  • [34] Divisors of shifted primes
    Indlekofer, KH
    Timofeev, NM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 60 (3-4): : 307 - 345
  • [35] On products of shifted primes
    Berrizbeitia, P
    Elliott, PDTA
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 219 - 223
  • [36] The binary Goldbach conjecture with primes in arithmetic progressions with large modulus
    Bauer, Claus
    Wang, Yonghui
    ACTA ARITHMETICA, 2013, 159 (03) : 227 - 243
  • [37] On prime factors of integers which are sums or shifted products
    Stewart, Cameron L.
    ANATOMY OF INTEGERS, 2008, 46 : 275 - 287
  • [38] The prime number theorem for primes in arithmetic progressions at large values
    Lee, Ethan Simpson
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (04): : 1505 - 1533
  • [39] ON A CONJECTURE ON RAMANUJAN PRIMES
    Laishram, Shanta
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (08) : 1869 - 1873
  • [40] Shifted primes and Kubilius models
    Elliott, PDTA
    NEW TRENDS IN PROBABILITY AND STATISTICS, VOL 4: ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 1997, 4 : 297 - 312